首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2019-01-19
70
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
,β
2
=l
1
,α
1
+l
2
,α
2
,其中k
1
,k
2
与l
1
,l
2
是不全为0的常数。 由k
1
,β
1
+k
2
,β
2
一l
1
α
1
一l
2
α
2
=0,得新的齐次方程组 [*] 对新方程组的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组的系数矩阵变为[*],可知方程组只有零解,即k。 =k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。于是 η=(l
1
+4l
2
)β
1
+(l
2
+7l
2
)β2=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
2
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/kBP4777K
0
考研数学三
相关试题推荐
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
若f′(χ)=sinχ,则f(χ)的原函数之一是【】
设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上正值连续函数,a.b为常数,则=【】
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
微分方程ydχ+(χ2-4χ)dχ的通解为_______.
曲线y=ex与该曲线过原点的切线及y轴所围成的平面图形绕.y轴旋转一周所得的旋转体的体积为__________.
函数f(x)=(x2一2x一3)|x2—3x|sin|x|不可导点的个数是().
微分方程满足条件y(2)=0的特解是().
一汽车沿一街道行驶,需要通过三个均设有红绿灯的路口.每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口个数,求X的概率分布.
设二维离散型随机变量(X,Y)的联合概率分布为试求:(I)X与Y的边缘分布律,并判断X与Y是否相互独立;(Ⅱ)P{X=Y}.
随机试题
在狭义相对论中,对同时的相对性的理解,下列说法中正确的是()
血液凝固的内源性激活途径与外源性激活途径的主要差别在于
某企业资产总额为100万元,负债为20万元,在将10万元负债转作投入资本后,资产总额为()。
关于“经济法”和“调整经济的法”的说法,正确的是()。
控告:辩护
根据以下资料。回答下列问题。2007年我国粮食种植面积10553万公顷,比上年增加70万公顷;棉花种植面积559万公顷,增加7万公顷;油料种植面积1094万公顷,减少60万公顷;糖料种植面积167万公顷,增加10万公顷。全年粮食产量5015
世界是物质的世界,对物质的正确理解是我们认识和把握世界本质和规律的前提。马克思主义认为物质是
Linux操作系统与WindowsNT、NetWare、UNIX等传统网络操作系统最大的区别是______。
在考生文件夹下有数据库“投资”,请编写并运行符合下列要求的程序:设计一个名为“cd1”的菜单.菜单中有两个菜单项“计算”和“关闭”。程序运行时,单击“计算”菜单项应完成下列操作:①将现价比买入价高的股票账户信息存入“账户_y1”表,其中
New-AgeTransportItlooksasifitcamestraightfromthesetofStarWars.Ithasfour-wheeldriveandrisesaboverockys
最新回复
(
0
)