首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2017-11-09
61
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(Ⅰ)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A-E)=O,故R(A)+R(A-E)=n 事实上,因为A(A-E)=O,所以 R(A)+R(A-E)≤n 另外,由于E-A同A-E的秩相同,则有 n=R(E)=R[(E-A)+A]≤R(A)+R(E-A)=R(A)+R(A-E), 从而R(A)+R(A-E)=n 当λ=时,因为R(A-E)=n-R(A)=n-r,从而齐次线性方程组(E-A)χ=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0.E-A)χ=0的基础解系含n-r个解向量.因此,A属于特征值0有n-r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 A=[*] (Ⅱ)令P=(η
1
,η
2
,η
3
,…,η
n
),则A=PAP
-1
,所以 |A-2E|=|PAP
-1
-2E|=|A-2E|=[*]=|-E
r
|-|-2E
n-r
| =(-1)
r
(-2)
n-r
-(一1)
n
2
n-r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/kBX4777K
0
考研数学三
相关试题推荐
求的最大项.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设y(x)是微分方程y"+(x一1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
证明:,其中a>0为常数.
设常数0<a<1,求
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
求下列极限.
求方程karctanx一x=0不同实根的个数,其中k为参数.
随机试题
_______是人的全面发展的物质基础,_______是人的全面发展的基本条件。
“吐下之余,定无完气”的理论根据是
冠心病心绞痛气阴两虚证的治法是
此时辨证为何型呃逆()此病例若出现心烦口苦,大便秘结,舌红,脉弦数者,用五磨饮子加用何药()
结构实体混凝土强度通常()标准养护条件下的混凝土强度。
甲和乙先后发明了同一种保暖型外墙用建筑材料,并在同一天分别向专利管理机关中请专利。根据我国《专利法》的规定,由于他们是同一天申请的,所以只能授予他们分别拥有专利权。()
以下完全在境外消费的项目中,适用增值税零税率的有()。
注册会计师负责审计上市公司甲公司20×8年度财务报表。在确定重要性时,注册会计师遇到下列事项,请代为作出正确的专业判断。随着审计过程的推进,注册会计师通常认为修改重要性水平的合理理由是()。
某年,电信公司投入了巨资改善网络通讯质量和网络覆盖区,结果当年用户增加了20%,但是利润却下降了10%。最可能的原因是()。
利用对话框提示用户输入参数的查询过程称为()。
最新回复
(
0
)