首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2018-12-29
34
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
1
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,A项正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+ … +x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此B项是错误的。
C项是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知D项也是正确的。
综上可知,故选B。
转载请注明原文地址:https://kaotiyun.com/show/kFM4777K
0
考研数学一
相关试题推荐
(97年)设a1=2,证明:
(87年)当x=______时,函数y=x2a取得极小值.
(01年)设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________.
(92年)已知P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则事件A、B、C全不发生的概率为_______.
(91年)随机地向半圆0<y<(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比.则原点与该点的连线与x轴的夹角小于的概率为_______.
设随机变量X~t(n),Y~F(1,n),给定a(0<a<0.5),常数c满足P{X>c}=a,则P{Y>c2}=()
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,并有求f’(x)=一2x2+∫0xg(x一t)dt的拐点.
已知问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
设F:x=x(t),y=y(t)(α<t<β是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x’2(t)+y’2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈是函数f(x,y)在上的极值点,证明:f(x,y)在点P0沿的切线方
设z=z(x,y)是由9x2一54xy+90y2一6yz一z2+18=0确定的函数,(Ⅰ)求证z=z(x,y)一阶偏导数并求驻点;(Ⅱ)求z=z(x,y)的极值点和极值.
随机试题
按计价方式划分合同形式,一般分为()。
某造纸企业为应对桉树原料堆场、原料切片车间、碱回收锅炉车间、烘干车间以及发电机组车间发生的突发事件,制定了相应的应急预案。根据有关规定,关于该企业应急管理工作的说法,正确的有()。
出口信贷主要类型包括( )。
会计核算软件应当按照国家统一的会计制度的规定(),分期结算账目和编制会计报表。
根据《海关法》第五十六条至五十八条的规定,关税的减免分为()
甲公司采用销售百分比法预测资金需要量,预计2012年的销售收入为7200万元,预计销售成本、销售费用、管理费用、财务费用占销售收入的百分比分别为78%、1.2%、14.6%、0.7%,适用企业所得税税率为25%。若甲公司2012年计划股利支付率为60%,则
1,4,3,1,,()
在中央银行与政府的关系中,美国联邦储备系统是独立性较大的模式的典范,试从联储的结构及运行机制上对其独立性进行讨论。
Amongthelowestofthejudicialranks,justicesofthepeaceneverthelessfrequentlyexercisejurisdictionoveravarietyofmi
远期交易的履约方式主要是对冲平仓,也可采用实物交收方式。()
最新回复
(
0
)