首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2018-12-29
46
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
1
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,A项正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+ … +x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此B项是错误的。
C项是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知D项也是正确的。
综上可知,故选B。
转载请注明原文地址:https://kaotiyun.com/show/kFM4777K
0
考研数学一
相关试题推荐
(00年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
(97年)设f(x)连续,φ(x)=∫01f(xt)dt,且=A(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
(02年)
(96年)设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
(00年)已知方程组无解,则a=______.
(97年)设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
(89年)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为________.
设Σ为平面z=2x+3y(x≥0,y≥0,x+y≤2),则曲面积分(x+y+z)dS=_________.
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)一g(x)=o((x一x0)2)(x→x0).
函数μ=x2-2yz在点(1,一2,2)处的方向导数最大值为_________.
随机试题
金属指示剂是一种显色剂,它能与金属离子形成有色络合物。
可与IgG FC段结合的有
A.类神经症症状B.肌阵挛C.进行性痴呆D.昏迷和去皮质强直E.无动性缄默和尿失禁皮质-纹状体-脊髓变性患者最具特征的临床表现是
母乳中的乙型乳糖可促进肠道中
图示矩形截面受压杆,杆的中间段右侧有一槽,如图a)所示,若在杆的左侧,即槽的对称位置也挖出同样的槽(见图b),则图b)杆的最大压应力是图a)最大压应力的:
经济利润
以下属于新建房地产开发成本的有()。
外债是指境内机构对非居民承担的以外币表示的债务,下列选项中,属于外债范围的有()。
有如下程序:#includeusingnamespacestd;classXA{inta;public:s
—Aretheycomingtothemeeting?
最新回复
(
0
)