首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试问a取何值时,该方程组有非零解,并求出其通解.
试问a取何值时,该方程组有非零解,并求出其通解.
admin
2019-03-21
52
问题
试问a取何值时,该方程组有非零解,并求出其通解.
选项
答案
[详解1] 对方程组的系数矩阵A作初等行变换,有 [*], 当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 x
1
+x
2
+x
3
+x
4
=0. 由此得基础解系为 η
1
=(-1,1,0,0)
T
, η
2
=(-1,0,1,0)
T
, η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 x=k
1
η
1
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a≠0时, [*], 当a=-10时,r(A)=3<4,故方程组也有非零解,其同解方程组为 [*] 由此得基础解系为 η=(1,2,3,4)
T
, 所以所求方程组的通解为 x=kη,其中k为任意常数. [详解2] 方程组的系数行列式 [*] 当|A|=0,即a=0或a=-10时,方程组有非零解. 当a=0时,对系数矩阵A作初等行变换,有 [*] 故方程组的同解方程组为 x
1
+x
2
+x
3
+x
4
=0. 其基础解系为 η
1
=(-1,1,0,0)
T
, η
2
=(-1,0,1,0)
T
, η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 x=k
1
η
1
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a=-10时,对A作初等行变换,有 [*] 故方程组的同解方程组为 [*] 其基础解系为η=(1,2,3,4)
T
, 所以所求方程组的通解为x=kη,其中k为任意常数.
解析
[分析] 此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.
[评注] 化增广矩阵为阶梯形时,只能施行初等行变换,这一点是值得注意的.
转载请注明原文地址:https://kaotiyun.com/show/kFV4777K
0
考研数学二
相关试题推荐
求下列函数的导数y’:
设f’(x)=arcsin(x-1)2,f(0)=0,求∫01f(x)dx.
设D={((x,y)|x+y≥1,x2+y2≤1},求I=(x2+y2)dσ.
设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且f(x)=x,x∈[0,π),求∫π3πf(x)dx.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
要建一个圆柱形无盖水池,使其容积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ2,γ3,γ1),|A|=a,|B|=b,求|A+B|.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
求极限:
显然,当x=±1,±2时,D=0;又D的次数为4,故可设D=a(x-1)(x+1)(x-2)(x+2),其中x4的系数为a. 又D中含x4的项为a11a22a33a44-a13a22a31a44=1×(2-x2)×1×(9-x2
随机试题
胆总管结石合并急性胆管炎时表现不包括()。
小儿腹泻每日补钾量正确的是(mmol/kg)
某会展中心工程地上2层,建筑高度为24m,总建筑面积98000m2,钢桁架结构,耐火等级一级。该建筑一层层高12m,建筑面积85400m2,主要使用性质为登录大厅、主会议厅、六个展览厅、厨房及设备用房;二层建筑面积12600m2,主要使用性质为会议室及设备
在声誉风险管理中,董事会及高级管理层的责任不包括()。
信用卡的同一持卡人单笔透支发生额单位卡不得超过10万元人民币。( )
(浙江2010—83)如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD亏△AED的面积之比为3:2,问AE的长度是多少?()
Lookatthenotesbelow.Youwillhearatelephonemessageaboutcomplaints.MessageCaller:
Lifeinsurance,beforeavailableonlytoyoung,healthypersons,cannowheobtainedfromoldpeople,andevenforpets.
Harry’sgrandfatherhasagreat(collect)______ofoldcoins.
HowShouldYouBuildupYourVocabularyExactlywhatdoyoudoduringanormalday?Howdoyouspendyourtime?PaulT.Rank
最新回复
(
0
)