首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设a0=1,a1=0,的和函数. (Ⅰ)证明幂级数的收敛半径不小于1; (Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
(2017年)设a0=1,a1=0,的和函数. (Ⅰ)证明幂级数的收敛半径不小于1; (Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
admin
2018-07-24
76
问题
(2017年)设a
0
=1,a
1
=0,
的和函数.
(Ⅰ)证明幂级数
的收敛半径不小于1;
(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
选项
答案
(Ⅰ)因为a
0
=1,a
1
=0, [*] 所以0≤a
n+1
≤1. 记R为幂级数[*]的收敛半径.当|x|<1时,因为|a
n
x
n
|≤|x|
n
且级数[*]收敛, 所以幂级数[*]绝对收敛,于是(一1,1)[*](一R,R),故R≥1. (Ⅱ) [*] 解方程(1一x)S’(x)-xS(x)=0得 [*] 由S(0)=a
0
=1得C=1,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kGW4777K
0
考研数学三
相关试题推荐
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)xn的收敛半径为R0,则有().
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令,求Y的密度函数.
求由直线x=1,x=3与曲线y=xlnx及过该曲线上一点处的切线围成的平面图形的最小面积.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设方程组(Ⅰ)与方程组(Ⅱ)x1+2x2+x3=n-1有公共解,求a的值及所有公共解.
(1995年)下列广义积分发散的是()
(1995年)设f’(lnx)=1+x,则f(x)=______.
随机试题
甲被某市政府评为道德模范,本地媒体对甲的事迹进行了宣传。乙在微博平台发文对甲的故事进行质疑,认为对甲的部分报道并不真实,该微博被大量转载。一时间,甲承受众多质疑,精神倍感痛苦,遂向人民法院起诉请求精神损害赔偿。经法院审理查明,媒体在报道的时候的确进行了过度
甲型肝炎的潜伏期为()
核衰变后质量数不变,原子序数减少1的衰变是
招标采购项目常用的风险应对方法包括()。
关于短期借款的账务处理中,正确的有()。
某彩电生产企业为增值税一般纳税人。2015年相关生产、经营资料如下:(1)企业坐落在某市区,全年实际占用土地面积共计140000平方米,其中:企业办的职工子弟学校占地10000平方米、幼儿园占地4000平方米、非独立核算的门市部占地6000平方米、职
如果你被录用为一名公安干警,遇到什么情况你会提出辞职或者请求调离?
不是所有的规章制度都具有强制性。()
设f(x)在[0,1]上可导,f’(x)>0,求φ(x)=∫01f(x)一f(t)|dt的极值点.
Theworldeconomyhasrunintoabrickwall.Despitecountlesswarningsinrecentyearsabouttheneedtoaddressapotentialhu
最新回复
(
0
)