首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
admin
2017-10-21
102
问题
已知二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
.a
1
,a
2
,…,a
n
满足什么条件时f(x
1
,x
2
,…,x
n
)正定?
选项
答案
按正定的定义来检查. 显然对任何(x
1
,x
2
,…,x
n
),f(x
1
,x
2
,…,x
n
)≥0.并且等号成立的充要条件为x
1
+a
1
x
2
=x
2
+a
2
x
3
=…=x
n
+a
n
x
1
=0.于是,f(x
1
,x
2
,…,x
n
)正定的充要条件为齐次方程组 [*] 没有非零解,即其系数矩阵 [*] 可逆.|A|=1+(一1)
n-1
a
1
a
2
…a
n
.于是,f正定的充要条件为a
1
a
2
…a
n
≠(一1)
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/kOH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设n阶矩阵A与对角矩阵相似,则().
设A是m×n矩阵,若ATA=0,证明:A=0.
设A,B皆为n阶矩阵,则下列结论正确的是().
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
随机试题
男孩,10岁。智力发育正常,平时兴奋多动,思想不集中,冲动、任性,学习成绩时好时坏,诊断为儿童注意力缺陷多动综合征。下列哪点不是其主要临床特点
《突发公共卫生事件应急条例》规定,对传染病患者和疑似传染病患者,应采取的措施中,错误的是
关于特雷诺指数,下列说法正确的是( )。
储蓄圉债自发行之日起计息,付息方式分为()。
情境教学由三个维度组成,下列选择项中不属于其要素的是
[*]
为了提高软件测试的效率,应该(33)。与设计测试用例无关的文档是(34)。
下列对IPv6地址FE01:0:0:050D:23:0:0:03D4的简化表示中,错误的是()。
定义如下变量和数组:inti,x[3][3]={1,2,3,4,5,6,7,8,9};则下面语句的输出结果是()。for(i=0;i<3;i++)printf(’’%d’’,x[i][2-i]);
ChoosingaForeignLanguagetoStudyItisnoteasytochooseaforeignlanguagetostudy,buttherearesomequestionsyoucan
最新回复
(
0
)