首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
admin
2012-05-31
62
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(1)存在η∈(1/2,1),使f(η)=η;
(II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(I)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,[*]由已知条件及(I)中结论,知g(x)也是连续函数,且g(0)=[f(0)-0]e
o
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ∈(0,η),使得gˊ(ξ)=0, 又gˊ(x)=-λe
-λx
[f(x)-x]+e
-λx
[fˊ(x)-1], 所以-λ[f(ξ)-ξ]+fˊ(ξ)-1=0 此即fˊ(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/kpC4777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,且f(1)=1,则
[*]
1/12
设有两台仪器,每台无故障工作的时间服从参数为5的指数分布.首先开动一台,发生故障时停用,而另一台自动开动,求两台仪器无故障工作的总时间T的:(Ⅰ)概率密度f(t);(Ⅱ)数学期望和方差.
A、 B、 C、 D、 D
在3维线性空间V3中求基ζ1,ζ2,ζ3到基η1,η2,η3的过渡矩阵,其中ζ1=(1,0,1)T,ζ2=(1,1,一1)T,ζ3=(1,一1,1)T,η1=(3,0,1)T,η2=(2,0,0)T,η3=(0,2,一2)T.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为().
设随机变量X,Y相互独立,X的分布函数为F(X)=,Y服从参数为λ的指数分布,求P{|X—Y|≥1}.
求微分方程xdy+(y-3)dx=0的满足初始条件y(1)=0特解.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-[2(x2+y2)]/h(t)已知体积减少的速度与侧面积成正比,且比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
随机试题
分析辛弃疾《摸鱼儿》(更能消、几番风雨)一词比兴、象征手法的运用。
端粒是
乳腺MRI扫描的特点是
A.慢性萎缩性胃炎B.胃淀粉样变性C.Menetrier病D.疣状胃炎E.非感染性肉芽肿性胃炎病理表现为胃小凹延长扭曲,深处有囊样扩张,伴壁细胞和主细胞减少,胃黏膜层明显增厚的是
跟腱反射,是检查
钢结构的主要缺点之一是()。
发达国家的国债负担率警戒线为()。
行政许可是指行政机关根据公民、法人或者其他组织的申请,经依法审查,准予其从事特定活动的行为。根据上述定义,下列属于行政许可的是()。
在名称为Forml的窗体上设计一个菜单。要求在窗体上添加名为menu0,标题为“菜单命令”的主菜单,再添加两个名称分别为“menul”、“menu2”,标题分别为“不可用菜单项”、“上一菜单项可用”的子菜单,并且使程序运行时,menul子菜单不可用,men
HowShouldTeachersBeRewarded?[A]Weneverforgetourbestteachers—thosewhoinspireduswithadeeperunderstandingor
最新回复
(
0
)