首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为可导函数,F(χ)为其原函数,则( ).
设f(χ)为可导函数,F(χ)为其原函数,则( ).
admin
2019-08-23
34
问题
设f(χ)为可导函数,F(χ)为其原函数,则( ).
选项
A、若f(χ)是周期函数,则F(χ)也是周期函数
B、若f(χ)是单调函数,则F(χ)也是单调函数
C、若f(χ)是偶函数,则F(χ)是奇函数
D、若f(χ)是奇函数,则F(χ)是偶函数
答案
D
解析
令f(χ)=cosχ-2,F(χ)=sinχ-2χ+C,显然f(χ)为周期函数,但F(χ)为非周期函数,A不对;
令f(χ)=2χ,F(χ)=χ
2
+C,显然f(χ)为单调增函数,但F(χ)为非单调函数,B不对;
令f(χ)=χ
2
,F(χ)=
χ
3
+2,显然f(χ)为偶函数,但F(χ)为非奇非偶函数,C不对;
若f(χ)为奇函数,F(χ)=∫
a
χ
f(t)dt,
因为(-χ)=∫
a
-χ
f(t)dt
∫
-a
χ
f(-u)(-du)=∫
-a
χ
f(u)du
=∫
-a
a
f(u)du+∫
a
χ
f(u)du=∫
a
χ
f(u)du=F(χ),
所以F(χ)为偶函数,选D.
转载请注明原文地址:https://kaotiyun.com/show/ksA4777K
0
考研数学二
相关试题推荐
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设c为常数,存在且不为0,求常数c的值并求极限值。
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则=()
椭球面S1是椭圆绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转一周而成。[img][/img]求S1及S2的方程;
计算二重积分,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}。[img][/img]
两个相同直径为2R>0的圆柱体,它们的中心轴垂直相交,则此两圆柱体公共部分的体积为()(所画出的图形的体积是要求的,如图)
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
随机试题
Thecommittee______ninemembers.
患者,女性,31岁。农民,面部水肿、疲倦、乏力半个月,双侧面颊和鼻梁部有蝶形红斑,表面光滑,指掌部可见充血红斑。实验室检查:血沉65mm/L,尿蛋白(+++),抗核抗体(+),抗Sm抗体(+)。Hb和血WBC正常。针对病情,目前护士应教育患者重点注意
某媒体未征得艾滋病孤儿小兰的同意,发表了一篇关于小兰的报道,将其真实姓名、照片和患病经历公之于众。报道发表后,隐去真实身份开始正常生活的小兰再次受到歧视和排斥。下列哪一选项是正确的?(卷三2007年真题试卷第22题题)
若业主方不具备条件自选管理项目建设则可以考虑以下何种模式()。
()操作可实现不同窗口(任务)之间的切换。
保本浮动收益理财计划是指商业银行按照约定条件向客户保证本金支付.本金以外的投资风险由客户与银行共同承担,并依据实际投资收益情况确定客户实际收益水平的理财计划。()
下列各项中,不属于增量预算基本假定的是()。
《二泉映月》是用下列哪一种乐器演奏的?()
双杠项目的动作从分类学角度来看,可分为_______动作、_______动作、_______动作。
在SQL中,删除表的语句是
最新回复
(
0
)