首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
admin
2018-07-31
40
问题
设有两组n维向量α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
n
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
+β
1
,…,α
m
+β
m
,α
1
一β
1
,…,α
m
一β
m
线性相关.
C、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
线性无关.
答案
B
解析
由条件知有不全为零的数λ
1
,…,λ
m
,k
1
,…,k
m
,使λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
—β
1
)+…+k
m
(α
m
—β
m
)=0,所以,向量组α
1
—β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
必线性相关。
转载请注明原文地址:https://kaotiyun.com/show/l5g4777K
0
考研数学一
相关试题推荐
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
新疆被列入国家历史文化名城的有()。
苏合香丸的组成药物中不含
下列各项中,可以成为国际法主体的是:()。
矩形截面简支梁梁中点承受集中力F。若h=26,分别采用图(a)图(b)两种方式放置,图(a)梁的最大挠度是图(b)梁的()。
《工程建设监理合同》示范文本规定,监理单位( )发布开工令、停工令、复工令。
乙公司于2011年末购入一台设备并投入企业管理部门使用,入账价值为463500元,预计使用年限为5年,预计净残值为13500元.自2012年1月1日起按年限平均法计提折旧。2013年初,由于技术进步等原因,公司将该设备的折旧方法改为年数总和法,预计剩
某综合性企业2002年度有关资料如下:(1)8月与外商订立加工承揽合同一份,合同中分别记载加工费金额20万美元,原材料100万美元。签订合同日国家外汇管理局公布的人民币外汇牌价为1:8.27。(2)10月与甲公司签订转让技术合同,转让收入由
ScreenTestEveryyearmillionsofwomenarescreenedwithX-raystopickupsignsofbreastcancer.Ifthishappensearlye
Traditionally,universitieshavecarriedouttwomainactivities:researchandteaching.Manyexpertswouldarguethatboththes
WhyisRachelcomingtoseeDr.Jones?
最新回复
(
0
)