首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=2y12+2y22+by32。 求常数a,b及所用的正交变换矩阵Q;
admin
2019-01-26
74
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-2x
1
x
2
-2x
1
x
3
+2ax
2
x
3
通过正交变换化为标准形f=2y
1
2
+2y
2
2
+by
3
2
。
求常数a,b及所用的正交变换矩阵Q;
选项
答案
由题意得,二次型矩阵及其对应的标准形矩阵分别为 [*] 由矩阵B可知,矩阵A的特征值为2,2,b。矩阵A的迹tr(A)=3=2+2+b,所以b=-1。 由于2是矩阵A的二重特征值,而实对称矩阵A必可相似对角化,所以矩阵A的对应于特征值2的线性无关的特征向量有2个。于是矩阵A-2E的秩为1,而 [*] 所以a=-1。 由(A-λE)x=0得,特征值为λ
1
=λ
2
=2,λ
3
=-1,对应的特征向量分别为 α
1
=(1,0,-1)
T
,α
2
=(0,1,-1)
T
,α
3
=(1,1,1)
T
, 由于实对称矩阵属于不同特征值的特征向量正交,所以先将α
1
,α
2
正交化得 [*] 再将β
1
,β
2
,α
3
单位化得 [*] 则正交变换矩阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/l5j4777K
0
考研数学二
相关试题推荐
(1992年)求曲线y=的一条切线l,使该曲线与切线l及直线χ=0,χ=2所围成平面图形面积最小.
(2015年)设函数f(χ)=χ+aln(1+χ)+bχsinχ,g(χ)=kχ3.若f(χ)与g(χ)在χ→0时是等价无穷小,求a,b,k的值.
(1990年)曲线上对应于t=处的法线方程是_______.
函数f(x)=xsinx()
设b>a>e,证明:ab>ba.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=aijxixj在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a一t)dt,证明:F(2a)一2F(a)=f2(a)一f(0)f(2a).
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
设则()
随机试题
张某向某银行借款3万元,此合同是()
获得性免疫缺陷综合征的典型特征,不包括A.HIV抗体阳性B.并发卡氏肺囊虫肺炎C.CD4+/CD8+比值倒置D.外周血红细胞数下降、血沉增快E.并发Kaposi肉瘤
下列药物中一般不宜制成胶囊剂的是()
评标活动应当遵循()的原则。
商业区某商场共6层,每层建筑面积3000m2,土地使用年限为40年,从1996年5月18日起计。该商场一至四层于1998年5月18日租出,租期为5年,月租金为每平方米240元,且每年不变;五至六层于1998年7月1日租出,租期为3年,月租金为每平方米210
某企业用银行存款8000元支付短期借款利息,会计入员编制的付款凭证为借记管理费用8000元,贷记银行存款8000元,并已登记入账。当年发现记账错误,更正时应采用的更正方法是()。
讨论会上,你的观点与大多数人矛盾,但你又坚信自己的观点是正确的。这时,你通常会()。
为了保护学生的隐私,某小学规定语文教师不得在课堂上点评学生的作文。该校的做法()。
全年规模以上港口完成货物吞吐量106.1亿吨,比上年增长8.5%,其中外贸货物吞吐量33.1亿吨,增长9.2%。规模以上港口集装箱吞吐量18878万标准箱,增长6.7%。2013年,下列项目增长最快的是:
TaskSheet:A:TimeManagement:theimpotanceofprioritizingtasksofworkB:Recruitment:howtoselectcompetentapplican
最新回复
(
0
)