首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,列向量组α1,α2,…,αn线性无关,则Aα1,Aα2,Aαn线性无关的充要条件是________.
设A为n阶矩阵,列向量组α1,α2,…,αn线性无关,则Aα1,Aα2,Aαn线性无关的充要条件是________.
admin
2021-07-27
91
问题
设A为n阶矩阵,列向量组α
1
,α
2
,…,α
n
线性无关,则Aα
1
,Aα
2
,Aα
n
线性无关的充要条件是________.
选项
答案
A可逆
解析
由题设,有[Aα
1
,Aα
2
,…,Aα
n
]=A[α
1
,α
2
,…,α
n
],故Aα
1
,Aα
2
,…,Aα
n
线性无关的充要条件为r(Aα
1
,Aα
2
,…,Aα
n
)=n,即|Aα
1
,Aα
2
,…,Aα
n
|≠0,也即|A||α
1
,α
2
,…,α
n
|≠0,由于α
1
,α
2
,…,α
n
线性无关,|α
1
,α
2
,…,α
n
|≠0,从而知|A|≠0.因此,Aα
1
,Aα
2
,…,Aα
n
线性无关的充要条件是A可逆.
转载请注明原文地址:https://kaotiyun.com/show/lhy4777K
0
考研数学二
相关试题推荐
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式Iα3,α2,α1,β1+β2等于()
下列行列式的值为n!的是().
随机试题
在物流过程中,引起金属商品破坏的主要形式是
社会主义初级阶段是从上世纪中叶我国社会主义改造基本完成、进入社会主义社会,到本世纪中叶基本实现社会主义现代化。()
A、 B、 C、 D、 A
治疗癃闭取关元、膀胱俞,其配穴方法是
麻疹早期的重要表现不包括()。
某地拟新建一家造纸厂,则按照《大气污染物综合排放标准》(GB16297—1996)的规定,对于其厂内的烟囱高度一般不能低于( )m,否则其应按照正常标准值的( )执行。
进口化妆品标签按照我国有关法律、法规、标准要求进行审核;出口化妆品标签按照进口国法律/法规/标准要求进行审核。经审核符合要求的化妆品标签,由国家质检总局颁发 ( )。
证券的承销方式有多种,主要包括()。
纳税检查是()根据国家税法和财务会计制度的规定,对纳税人履行纳税义务的情况进行检查和监督,以充分发挥税收职能作用的一种管理活动。
在窗体上有一个名称为Commandl的命令按钮,并编写有如下事件过程:PrivateSubCommandl_Click()Move500,500EndSub程序执行时,单击命令按钮,实现的功能是()
最新回复
(
0
)