首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1服从参数为2的泊松分布,而X2服从二项分布B(4,0.5),X3服从区间[-3,3]上的均匀分布,判断以矩阵 为系数矩阵的齐次线性方程组Aχ=0的解的情况.
设随机变量X1服从参数为2的泊松分布,而X2服从二项分布B(4,0.5),X3服从区间[-3,3]上的均匀分布,判断以矩阵 为系数矩阵的齐次线性方程组Aχ=0的解的情况.
admin
2019-05-14
67
问题
设随机变量X
1
服从参数为2的泊松分布,而X
2
服从二项分布B(4,0.5),X
3
服从区间[-3,3]上的均匀分布,判断以矩阵
为系数矩阵的齐次线性方程组Aχ=0的解的情况.
选项
答案
依题意EX
1
=DX
1
=2,EX
1
2
=DX
1
+(EX
1
)
2
=6; EX
2
=np=2,DX
2
=npq=1,EX
2
2
=5; EX
3
=[*](a+b)=0,DX
3
=[*](b-a)
2
=3,EX
3
2
=3. [*] 由于方程组系数矩阵行列式|A|=0,因此该齐次方程组Aχ=0有无穷多解.若进一步分析,矩阵A的秩是2,因此其方程组的基础解系中只有一个解向量.事实上方程组的全部解为 χ=[*](c为任意实数).
解析
转载请注明原文地址:https://kaotiyun.com/show/lp04777K
0
考研数学一
相关试题推荐
设g*(x)=0,且f(x)-f*(x),g(x)-g*(x)(x→a).当x→a时无穷小f(x)与g(x)可比较,不等价(=∞),求证:f(x)-g(x)~f*(x)-g*(x)(x→a);
设A为三阶非零矩阵,B=,且AB=0,则Ax=0的通解是_______.
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
求下列微分方程的通解或特解:+2y=e-xcosx.
已知一条抛物线通过x轴上两点A(1,0),B(3,0),方程为y=a(x-1)(x-3),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
求下列极限:
设A是n阶矩阵,Am=0,证明E-A可逆.
设f(x)在x=0处二阶可导,又I==1,求f(0),f’(0),f"(0).
过曲线y=x2(x≥0)上某点A作一切线,使之与曲线及x轴围成图形面积为1/12,求:(Ⅰ)切点A的坐标;(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕x轴旋转的旋转体的体积.
接连不断地、独立地对同一目标射击,直到命中为止,假定共进行n(n≥1)轮这样的射击,各轮射击次数相应为k1,k2,…,kn,试求命中率p的最大似然估计值和矩估计值.
随机试题
审美趣味的外在表现是
下面疾病可表现为前肉饱满的是
急性或亚急性皮炎而无渗液者可选用慢性局限性浸润肥厚性皮肤病者可选用
判断膀胱破裂最简便的检查方法是()
胎儿形成的妊娠周数是
A.2天内B.2~3天C.3天内D.3~4天E.5天
6岁女孩,诊断为“肾病综合征”,因水肿、尿少,给予利尿消肿治疗,患儿发生腹胀,乏力,膝反射减弱,心音低钝,心电图出现U波,治疗中需及时补充
案情:高某(男)与钱某(女)在网上相识,后发展为网恋关系,其间,钱某知晓了高某一些隐情,并以开店缺钱为由,骗取了高某20万元现金。见面后,高某对钱某相貌大失所望,相处不久更感到她性格古怪,便决定断绝关系。但钱某百般纠缠,最后竟以公开隐情相
国家法定休假日、休息日不计入年休假的假期。()
古名“桑泊”指现在的()。
最新回复
(
0
)