首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,∫01f(x)dx=∫01x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
设f(x)在[0,1]上可导,∫01f(x)dx=∫01x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
admin
2019-01-23
47
问题
设f(x)在[0,1]上可导,∫
0
1
f(x)dx=∫
0
1
x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
选项
答案
作辅助函数F(x)=∫
0
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,又0=∫xf(x)dx=∫
0
1
xdF(x)=xF(x)|
0
1
—∫
0
1
F(x)dx=0,由积分中值定理, 存在点η∈(0,1),使得F(η)=0.于是,在[0,η]和[η,1]上分别对F(x)应用洛尔定理,存在点ξ
1
∈(0,η),ξ
2
∈(η,1),使得f(ξ
1
)=f(ξ
2
)=0. 在[ξ
1
,ξ
2
]上对f(x)再应用洛尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得f’(ξ)=0.
解析
证明存在点ξ,使得f’(ξ)=0,可对f(x)用一次洛尔定理,也可对f(x)的原函数∫
a
x
f(t)dt用两次洛尔定理.
转载请注明原文地址:https://kaotiyun.com/show/lrM4777K
0
考研数学一
相关试题推荐
设A是n阶可逆矩阵,λ是A的特征值,则(A*)2+E必有特征值______.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)=0,fn(x)≠0.
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设随机变量X服从参数为λ的指数分布,G(z)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(X)的概率分布不是区间[0,1]上的均匀分布.
已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a.b.c.
设F(x)是连续型随机变量X的分布函数,常数a>0,则[F(x+a)一F(x)]dx=______.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(1)存在点η∈使得f(η)=η.(2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
随机试题
下列关于五脏所藏的叙述,错误的是
A.麻黄汤B.桑白皮汤C.乌头赤石脂丸D.生脉散E.参附汤胸痹气阴两虚证应用
市场调查方法可分为()。
据英国《每日邮报》报道,日本富士摄影胶片公司将利用所掌握的胶片技术创新护肤产品,进军美容业。感光乳剂中的胶原蛋白可以防止胶片被氧化,与利用胶原蛋白保护皮肤免受紫外线伤害有着异曲同工之妙。一些忠实于富士品牌的消费者认为这对于爱美人二=来说是一个好消息。消费者
下列选项中,属于基层群众性自治组织的有()。
TheInternetbeganinthe1960sasasmallnetworkofacademicandgovernmentcomputersprimarilyinvolvedinresearchfortheU
Everyhumanbeing,nomatterwhatheisdoing,givesoffbodyheat.Theusualproblemishowtodisposeofit.Butthedesigners
ShehadawayofalludingtoJeanbutneversayinghername.
TheAncientGreekOlympicsToday’sOlympicGamesarebasedonwhattookplaceatOlympia,inGreece,nearlythreemillennia
Afterretiringfrom30yearsofteaching,EthbellPeppercouldeasilyhavedecidedtositbackand【B1】______andenjoyapeaceful
最新回复
(
0
)