首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有 【 】
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有 【 】
admin
2016-05-30
66
问题
(2002年)设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不能由α
1
,α
2
,α
3
线性表示,则对于任意常数k,必有 【 】
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关.
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关.
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关.
答案
A
解析
由已知,存在常数β,l,l,l,使得
β
1
=l
1
α
1
+l
2
α
2
+l
3
α
3
(*)
如果kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表示,则存在常数m
1
,m
2
,m
3
,使得
kβ
1
+β
2
=m
1
α
1
+m
2
α
2
+m
3
α
3
(**)
将(*)式代入(**)式,可得
β
2
=(m
1
-kl
1
)α
1
+(m
2
-kl
2
)α
2
+(m
3
-kl
3
)α
3
即β
2
可由α
1
,α
2
,α
3
线性表示,这与已知条件矛盾,故kβ
1
+β
2
必不能由α
1
,α
2
,α
3
线性表示.再根据结论:“若α
1
,α
2
,α
3
线性无关,则向量β不能由α
1
,α
2
,α
3
线性表示
α
1
,α
2
,α
3
,β线性无关”,便可推知α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,因此,选项A正确.
转载请注明原文地址:https://kaotiyun.com/show/m734777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(x)=0,f(x)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’2(ξ)=0.(Ⅱ)若f(a)=f(b)=∫0bf(x)dx=0,证明:存在η∈(a,b),使
求下列函数的极限.
求极限.
设当x→0时,ex-(ax2+bx+1)是比x2高阶的无穷小,则________。
当x→0时,-1与xsinx是等价无穷小,则a=________.
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(2003年)有一平底容器,其内侧壁是由曲线χ=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/min的速率均匀扩大(假设注入液体前,容器内无液体
(2003年)设f(χ)为不恒等于零的奇函数,且f′(0)存在,则函数g(χ)=
随机试题
V形传动带带角外包布破损,每边累计长度不超过带长30%,内包布不允许有破损,其产品是()。
我国古代医学有阴阳五行的病理学说和外因“六淫”、内囚“七情”等病因学说。这些医学理论反映的医学模式是()。
右腕部跌伤,拟为桡骨下端骨折。诊断依据是
《世行采购指南》规定,投标保证金应当在投标有效期满后()天内一直有效。
下列关于市场经济与职业道德关系的说法中,正确的是()。
能够从上述资料中推出的是()。
假设磁头当前位于第105道,正在向磁道序号增加的方向移动。现有一个磁道访问请求序列为35,45,12,68,110,180,170,195,采用SCAN调度(电梯调度)算法得到的磁道访问序列是()。
弱势群体
DirtyBritainBeforethegrasshasthickenedontheroadsidevergesandleaveshavestartedgrowingonthetreesisaperfect
A、Peopledeserveallthedisasters.B、Peopleshouldn’thavedeservedthedisasters.C、Peoplehavebeenreadyforthetornado.D、
最新回复
(
0
)