首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明: (Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明: (Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
admin
2017-11-30
52
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:
(Ⅰ)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ);
(Ⅱ)存在一点η∈(a,b),使得f’(η)=-3f(η)g’(η)。
选项
答案
(Ⅰ)令φ(x)=e
-2x
f(x),因为f(a)=f(b)=0,所以φ(a)=φ(b)=0,根据罗尔定理,存在一点ξ∈(a,b),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f’(x)-2f(x)]且e
-2x
≠0,所以f’(ξ)=2f(ξ)。 (Ⅱ)令h(x)=f(x)e
3g(x)
,因为f(a)=f(b)=0,所以h(a)=h(b)=0,根据罗尔定理,存在一点η∈(a,b),使得h’(η)=0,而h’(x)=e
3g(x)
[f’(x)+3f(x)g’(x)]且e
3g(x)
≠0,所以f’(η)=-3f(η)g’(η)。
解析
转载请注明原文地址:https://kaotiyun.com/show/m9X4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一f(t)dt=0.(1)求f’(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设=A,证明:数列{an}有界.
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
证明:,其中a>0为常数.
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
随机试题
设F(x)=ln(3x+1)是函数f(x)的一个原函数,则f’(2x+1)dx=()
在我国土地利用总体规划纲要中,对东部地区土地利用区的划分是()。
某石油化工厂2003年1月,销售无铅汽油15吨,柴油12吨,提供给本厂基建工程车辆、设备使用柴油3吨,将6吨含铅汽油进行提炼生产高品质汽油。汽油1吨=1388升,柴油1吨=1176升。该厂本月应纳消费税( )元。
若要定量研究边际消费倾向,并预测一定收入条件下的人均消费金额,适用的统计方法是()。
“爽借清风明结月,动观流水静观山”属于()
材料一:“解放以后,民族资产阶级走上社会主义改造的道路,这是逼出来的。我们打倒了蒋介石,没收了官僚资本,完成了土地改革,进行了‘三反’、‘五反’,实现了合作化,从一开始就控制了市场。这一系列的变化,一步一步地逼着民族资产阶级不能不走上接受改造的道路。”
“吾见申叔夫子,所谓生死而肉骨也。”(《左传·襄公二十二年》)这句话中,“生死而肉骨”:(暨南大学2016)“生死”属于________结构。
下列关于Word文档打印的叙述中,不正确的是______。
下列选项中,能正确定义数组的语句是
Theaddressofthegovernmentbookshopis______.ThesoftwareJackrecommendsisdesignedto______.
最新回复
(
0
)