首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
admin
2022-03-14
66
问题
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
选项
A、存在n阶可逆矩阵Q,使得AQ=(E
m
,O)
B、存在n阶可逆矩阵P,使得PA=(E
m
,O)
C、齐次线性方程组Ax=0有零解
D、非齐次线性方程组Ax=b有无穷多解
答案
B
解析
①因为A是m×n矩阵,m<n,r(A)=m,所以存在m阶可逆矩阵B和n阶可逆矩阵C,使得BAC=(E
m
,O),于是
AC=B
-1
(E
m
,O)=(B
-1
E
m
,O)=(E
m
B
-1
,O)
=(E
m
,O)
记D=
,则D为n阶可逆矩阵,且AC=(E
m
,O)D,由此可得,ACD
-1
=(E
m
,O).
②齐次线性方程组Ax=0总是有零解。
③由条件可得r(A)=r(A,b)=m<n,故Ax=b有无穷多解。
④下面的例子表明不一定存在m阶可逆矩阵P,使得PA=(E
m
,O).
取m=2,n=4,A=
,则A是2×4矩阵,2<4,且r(A)=2,但对于任意的2阶可逆矩阵P,有PA=P(O,E
2
)=(O,P)≠(E
2
,O)。
转载请注明原文地址:https://kaotiyun.com/show/mIR4777K
0
考研数学三
相关试题推荐
设其中f(x)在x=0处可导,f’(0)≠0,f(0)=0,则x=0是F(x)的()
若函数z=f(χ,y)满足=2,且f(χ,1)=χ+2,又f′y(χ,1)=χ+1,则f(χ,y)等于【】
函数项级的收敛域为()
n阶实对称矩阵A正定的充分必要条件是()
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
在区间[0,π]上随机取两个数X与Y,则概率P{cos(X+Y)<0)=__________.
求∫0φ(x)[φ(x)一t]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
[*][*]【思路探索】根据无穷小与极限之间的关系表示f(x),综合运用极限的四则运算法则及洛必达法则即得结果.
设f(x)是连续函数.
曲线的渐近线条数为()
随机试题
说明矛盾的普遍性和特殊性辩证关系的原理、“两点论”和“重点论”相统一的原理对社会主义现代化建设的指导意义。
从某种程度上来说,出版物发行单位的经营计划能否如期实现,主要取决于出版物结构是否合理。()
WantedxxxForeignLanguageInstituteisaforeignlanguagestudyinginstitute.NowweareseekingfortwoEnglishteachers.
下列关于尿糖的说法中正确的是
对具有破产原因而又有再生希望的企业,经利害关系人申请,人民法院可以依法裁定重整。下列有关债务人及其出资人重整期间权利义务的表述中,正确的是()。
家庭教养方式对儿童有重要影响,该案例中反映的家庭家养方式倾向于()。
许多创业成功的人士都没有漂亮的学历,但这并没有妨碍他们成功。事实告诉我们,漂亮的学历对于成功具有重要作用。但是,一个人,只要有准确的信息分析能力、高度的经济敏感和果断的个人勇气,就能很快学会如何做出正确的决定,对于一个缺少以上三种素养的人,漂亮的学历没有什
关于政治思想,下列表述错误的是()。
ThewriterthinksthattheU.S.government’sdefinitionofthehomelessreveals______.Thebreakupoffamiliesislikelytole
有如下函数模板:templateTsquare(Tx){returnx*x;}其中的T是
最新回复
(
0
)