首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证三条直线交于一点的充分必要条件为a+b+c=0.
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-04-08
56
问题
[2003年] 已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0, l
2
:bx+2cy+3a=0, l
3
:cx+2ay+3b=0.
试证三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
先证必要性.设三直线交于一点,则二元线性方程组 [*] 有唯一解,故其系数矩阵[*]与其增广矩阵[*]的秩为2,且[*] 由于 [*]=6(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
], 又l
1
,l
2
,l
3
是三条不同直线,故a=b=c不成立.因而(a一b)
2
+(b-c)
2
+(c-a)
2
≠0(或者如果a=b=c,则三条直线重合,从而有无穷多个交点与交点唯一矛盾),故a+b+c=0. 下证充分性.若a+b+c=0,则c=一(a+b),且由必要性的证明中知[*],故秩[*]. 又系数矩阵A中有一个二阶子式 [*]=2(ac一b
2
)=2[a(a+b)+b
2
]=-2[(a+b/2)
2
+3b
2
/4]≠0, 故秩(A)=2.于是秩(A)=[*]=2.因而方程组①有唯一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/mR04777K
0
考研数学一
相关试题推荐
设A与B分别是m,n阶矩阵,证明
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
证明下列不等式:(Ⅰ)dx<π;(Ⅱ)
对随机变量X,已知EekX存在(k>0常数),证明:P{X≥ε}≤.E(ekX),(其中ε>0).
求过直线且与点(1,2,1)的距离为l的平面方程.
设求实对称矩阵B,使A=B2.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(1)存在点η∈使得f(η)=η.(2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.求正交变换X=QY将二次型化为标准形;
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
随机试题
创建新元件以便于能够多次使用相同的资源,可以实现的方式是:
Opticalillusionsarelikemagic,thrillingusbecauseoftheircapacitytorevealthefallibilityofoursenses.Butthere’smo
治疗快速性心律失常心脉瘀阻证,应首选()
对于精神分裂症中的兴奋躁狂症状患者,首选
麻子仁丸的组成药物中不含()
津伤化燥可发生于各脏腑组织,但以下述哪几个脏腑为多见()
片面追求升学率易造成教育的荒废。这是教育的()。
以下企业出口应税消费品不得办理消费税退税的有()。
下列关于函数依赖的叙述中,哪一个是不正确的?
A—brandloyaltyJ—marketshareB—brandvalueK—marketsizeC—buyinghabitL—marketinggoa
最新回复
(
0
)