首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证三条直线交于一点的充分必要条件为a+b+c=0.
[2003年] 已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-04-08
44
问题
[2003年] 已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0, l
2
:bx+2cy+3a=0, l
3
:cx+2ay+3b=0.
试证三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
先证必要性.设三直线交于一点,则二元线性方程组 [*] 有唯一解,故其系数矩阵[*]与其增广矩阵[*]的秩为2,且[*] 由于 [*]=6(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
], 又l
1
,l
2
,l
3
是三条不同直线,故a=b=c不成立.因而(a一b)
2
+(b-c)
2
+(c-a)
2
≠0(或者如果a=b=c,则三条直线重合,从而有无穷多个交点与交点唯一矛盾),故a+b+c=0. 下证充分性.若a+b+c=0,则c=一(a+b),且由必要性的证明中知[*],故秩[*]. 又系数矩阵A中有一个二阶子式 [*]=2(ac一b
2
)=2[a(a+b)+b
2
]=-2[(a+b/2)
2
+3b
2
/4]≠0, 故秩(A)=2.于是秩(A)=[*]=2.因而方程组①有唯一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/mR04777K
0
考研数学一
相关试题推荐
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
求幂级数(|x|<1)的和函数S(x)及其极值.
设f(x),g(x)在点x。可导,且f(x。)=g(x。),fˊ(x。)=gˊ(x。),若h(x)在x。的某一邻域内满足f(x)≤h(x)≤g(x),证明:h(x)在点x。可导,并且hˊ(x。)=fx。(x。)=gx。(x。).
一批产品共10件,其中7件正品,3件次品,每次从中任取一件,求下面两种情形下直到取到正品为止所需抽取次数的概率分布:(1)每次取出后再放回去;(2)每次取出后不放回.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x—t)dt.
求经过直线L:,而且与点a(a,1,2)的距离等于3的平面方程.
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设直线L:求直线绕z轴旋转所得的旋转曲面;
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.求正交变换X=QY将二次型化为标准形;
随机试题
()属于脑卒中患者的运动处方。
在刑事诉讼执行程序中,下列哪些情况可以暂予监外执行?()。
根据商业银行法的规定,下列有关商业银行的表述中哪一项是不正确的?
下列说法正确的是:
对图3-88中所示的平面杆件体系内力分析结果,哪项完全正确?[2004年第43题]
关于维果斯基的“文化-历史”发展理论,下列说法错误的是()。
民办学校的教师、受教育者与公办学校的教师、受教育者具有()。
已知正数x,y,z,满足x+y+z=xyz,且不等式恒成立,则λ的取值范围为()
郭明义同志是新时期学习实践雷锋精神的优秀代表,他先后荣获了道德模范、希望工程突。出贡献奖、全国无偿献血奉献奖金奖、全国红十字志愿者之星、中央企业优秀共产党员等荣誉称号。郭明义的人生价值主要表现在()
Thatis______.
最新回复
(
0
)