首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B是三阶非零矩阵,且A﹦。β1﹦(0,1,-1)T,β2﹦(a,2,1)T,β3﹦(6,1,0)T。是齐次线性方程组Bx﹦0的三个解向量,且Ax﹦β3有解。 (I)求a,b的值; (Ⅱ)求Bx﹦0的通解。
已知A,B是三阶非零矩阵,且A﹦。β1﹦(0,1,-1)T,β2﹦(a,2,1)T,β3﹦(6,1,0)T。是齐次线性方程组Bx﹦0的三个解向量,且Ax﹦β3有解。 (I)求a,b的值; (Ⅱ)求Bx﹦0的通解。
admin
2019-07-01
66
问题
已知A,B是三阶非零矩阵,且A﹦
。β
1
﹦(0,1,-1)
T
,β
2
﹦(a,2,1)
T
,β
3
﹦(6,1,0)
T
。是齐次线性方程组Bx﹦0的三个解向量,且Ax﹦β
3
有解。
(I)求a,b的值;
(Ⅱ)求Bx﹦0的通解。
选项
答案
(I)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx﹦0的三个解向量可知,向量组 β
1
,β
2
,β
3
必线性相关,则有 |β
1
,β
2
,β
3
|﹦[*] 解得a﹦36。 由Ax﹦β
3
有解可知,线性方程组Ax﹦β
3
,的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等变换得 [*] 所以b﹦-4,a﹦36﹦-12。 (Ⅱ)因为B≠O,所以r(B)≥1,则3-r(B)≤2。又因为β
1
,β
2
是Bx﹦0的两个线性无关的解向量,故3-r(B)≥2,故r(B)﹦1,所以β
1
,β
2
是Bx﹦0的一个基础解系,于是Bx﹦0的通解为 X﹦k
1
β
1
﹢k
2
β
2
, 其中k
1
,k
2
为任意常数。 本题考查向量组的线性相关性及线性方程组解的结构。非齐次线性方程组有解的充分必要条件是系数矩阵的秩等于增广矩阵的秩。齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解系,由此即可得出其通解。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTc4777K
0
考研数学一
相关试题推荐
设试验成功的概率为,失败的概率为,独立重复试验直到两次成功为止.设X为所需要进行的试验次数,求X的概率分布及E(X).
设飞机引擎在飞行中正常运行的概率为p,且各引擎是否正常运行是相互独立的.如果有至少50%的引擎正常运行,飞机就能成功飞行,问对于多大的p而言,4引擎飞机比2引擎飞机更可取?
设一设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:(1)相继两次故障之间的时间间隔T的概率分布;(2)在设备已无故障工作8小时的情况下,再无故障运行8小时的概率.
设X1,X2,…,Xn为来自总体X的简单随机样本,且X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求:当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
试证明:曲线恰有三个拐点,且位于同一条直线上.
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=______.
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λx的概率密度fY(y).
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率α.
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1-2α2+α3,(α1-α3),α1+3α2-4α3,是相应的齐次方程组Ax=O的解向量的个数为()
随机试题
根据公司法律制度的规定,会司法定代表人未经授权擅自以公司名义为他人提供担保的行为属于()。
男性,20岁,西安人,因发热3天,1天来少尿入院。查体可见球结膜充血、水肿,双腋下出血点。尿蛋白(+++),血WBC25×109/L,PLT50×109/L发热2周,伴腹痛腹泻。查体:T39.2℃,P78次/分。WBC4×109/L
腹部积块明显,质地较硬,固定不移,隐痛或刺痛,形体消瘦,纳谷减少,面色晦暗黧黑,面颈胸臂或有血痣赤缕,女子可见月事不下,舌质紫或有瘀斑瘀点,脉细涩。治疗方法宜首选
下列哪项不属于医学心理学的研究对象
中等度热的指标是指体温在
对隧道工程防水混凝土进行抗渗性能试验,请回答下列问题。混凝土抗渗试件尺寸和形状为()。
双代号网络进度计划时间参数中,( )是指在不影响其紧后工作最早开始的前提下,该工作所具有的机动时间。
()是公共管理的起点,决定了公共行政走向公共管理的必然态势。
AlthoughtheArcticlookslifeless,thereareanimalsmovingabout.Cariboutravelupanddownfeedingonthegrassbeneaththe
TipsforThoseWhoTravelAloneA)Whenitcomestotraveling,sometimestakingajourneyalonecanbegreat.Travelingalon
最新回复
(
0
)