首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
admin
2015-11-16
32
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。
选项
答案
证一 利用拆项重组法及线性无关的定义证之。 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0。 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0。 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关,因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …, k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。 证二 注意到α
1
,α
2
,…,α
s
,β线性无关,γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
,由 [*] 而α
1
,α
2
,…,α
s
,β线性无关,由矩阵表示法即知α
1
,α
2
,…,α
s
,β+γ线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTw4777K
0
考研数学一
相关试题推荐
已知方程有二重根,求满足条件的常数a及方程的根.
设y=,求y(n).
用最小二乘法求与下表给定数据最相符合的函数y=ax+b.
X与Y的联合概率分布
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设矩阵X=(χij)3×3为未知矩阵,问a、b、c各取何值时,矩阵方程Aχ=B有解?并在有解时,求出其全部解.
求微分方程y〞+4y′+4y=eaχ的通解.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
关于妇女产期劳动保护,下列哪项不正确:
胸胁支满,目眩心悸,短气而咳,舌苔白滑,脉弦滑者,治宜选用
跨度20m的简支梁,其合理的截面是()。
单位工程施工组织设计的编制应在()。
除办公、宿舍用房外,施工现场内诸如发电机房、变配电房等特殊用房,房间内任一点至最近疏散门的距离不应大于()m,房门的净宽度不应小于0.8m。
对于取得实行会员分级结算制度的交易所的全面结算业务资格的期货公司,首席风险官应当监督检查下列哪些事项?()
当一国国际收支出现巨额顺差、国内通货膨胀严重时,可行的政策选择是()。
()是构成一个人的思想、情感及行为的特有模式,这个独特模式包含了一个人区别于他人的稳定而统一的心理品质。
CPU向存储器写入一个操作数时,在执行周期内,首先发出的信号是( )。
ThemostsparselypopulatedcountyinWalesiswhereyouwillfindBritain’shappiestplace,sayresearchers,asPowystopsthe
最新回复
(
0
)