首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关。
admin
2015-11-16
73
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。
选项
答案
证一 利用拆项重组法及线性无关的定义证之。 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0。 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0。 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关,因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …, k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关。 证二 注意到α
1
,α
2
,…,α
s
,β线性无关,γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
,由 [*] 而α
1
,α
2
,…,α
s
,β线性无关,由矩阵表示法即知α
1
,α
2
,…,α
s
,β+γ线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/mTw4777K
0
考研数学一
相关试题推荐
设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设平面区域求二重积分
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在(一1,1)内至少存在一点ξ,使得f"’(ξ)=3.
设A=,且存在非零向量α,使得Aα=2α.求常数a.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A,B为n阶矩阵,则下列结论正确的是().
设有三个线性无关的特征向量,则a=________.
设积分I-dx(a>b>0)收敛,则()
设un≥0,n=1,2,…,对于级数(-1)n-1un下列结论正确的是().
随机试题
转向器的功用是将转向盘的转动变为齿条轴的直线运动或转向摇臂的摆动,()传动速度,()转向力矩的传动方向。
外来文化包括
以下对审计工作底稿的描述中,不恰当的是()
女性,35岁,风心病二尖瓣狭窄2年,近2周工作劳累,2天来活动时胸闷憋气较前加重,夜间阵发性呼吸困难,遂住院治疗。2分钟前突然咯大量鲜血。咯血的原因是
女,55岁,月经紊乱,周期长,8天/2~3个月,量多伴血块,对此病人的处理方案是
在一起抢劫伤人案件的侦查过程中,被害人提出要求被告人赔偿医药费的请求。对此,公安机关正确的做法是()
以下各项中,()是对进口废物管理正确的表述。
货币市场的一股特征是()。
根据马克思主义基本原理,决定道德发展状况的根本因素是()。
根据观察情境,教育观察可分为()
最新回复
(
0
)