首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,A有n个互不相同的特征值. 证明:(1)若AB=BA,则B相似于对角矩阵; (2)若A的特征向量也是B的特征向量,则AB=BA.
设A,B均为n阶矩阵,A有n个互不相同的特征值. 证明:(1)若AB=BA,则B相似于对角矩阵; (2)若A的特征向量也是B的特征向量,则AB=BA.
admin
2020-03-10
80
问题
设A,B均为n阶矩阵,A有n个互不相同的特征值.
证明:(1)若AB=BA,则B相似于对角矩阵;
(2)若A的特征向量也是B的特征向量,则AB=BA.
选项
答案
设λ
1
,λ
2
,…,λ
n
为A的n个互不相同的特征值,则A有n个线性无关特征向量p
1
,p
2
,…,p
n
,记可逆矩阵P=[p
1
,p
2
,…,p
n
],有 [*] (1)由AB=BA得P
-1
ABP=P
-1
BAP,于是P
-1
AEBP=P
-1
BEAP. 令E=PP
-1
,有 (P
-1
AP)(P
-1
BP)=(P
-1
BP)(P
-1
AP), 即 A
1
(P
-1
BP)=(P
-1
BP)A
1
. 下面证明P
-1
BP是对角矩阵. 设P
-1
BP=(c
ij
)
n×n
,则 [*] 比较两边对应元素得 λ
i
c
ij
=λ
j
c
ij
[*](λ
i
一λ
j
)c
ij
=0, 当i≠j时,λ
i
≠λ
j
,则c
ij
=0,故 [*] 从而B相似于对角矩阵. (2)若p
i
(i=1,2,…,n)也是B的特征向量,设对应特征值为μ
i
,即 Bp
i
=μ
i
p
i
(i=1,2,…,n), 则有 [*] 从而 P
-1
ABP=P
-1
AEBP=(P
-1
AP)(P
-1
BP)=A
1
A
2
=A
2
A
1
=(P
-1
BP)(P
-1
AP)=P
-1
BAP, 由此可得 AB=BA.
解析
转载请注明原文地址:https://kaotiyun.com/show/nAD4777K
0
考研数学三
相关试题推荐
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是()
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是()
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,还可以将其他条件改为()
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’(x)≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,的解。
设D={(x,y)|x2+y2≤√2,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。
求f(arccosx)2dx.
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
随机试题
“触景生情法"是导游在讲解服务中见物生情、借题发挥的讲解方法,使讲解内容与所见景物和谐统一,达到情景交融的效果。()
国际标准化组织的简称是________。
下颌下区手术消毒范围哪项是错误的
下列对尿崩症有效的降血糖药是
医疗机构制剂室设备的选型、安装应
关于保管合同和仓储合同,下列哪些说法是错误的?(卷三2010年真题试卷第61题)
土地他项权利包括()。
在工程网络计划的实施过程中,如果需要确定某项工作进度偏差对紧后工作最早开始时间的影响程度,应根据( )的差值进行确定。
给定资料资料一党的十九大报告提出的实施乡村振兴战略,正在温暖着各个村寨。乡亲们盼着乡村振兴,盼着农业强起来,生活富起来,农村美起来。基层干部反映,乡村振兴,急缺的就是资本。资本下乡,就是撬动乡村振兴的活水,是乡亲们的甘霖。随着我国“
以下程序中,函数SumColumMin的功能是:求出M行N列二维数组每列元素中的最小值,并计算它们的和值。和值通过形参传回主函数输出。请填空。#defineM2#defineN4voidSumCol
最新回复
(
0
)