首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=ln x+. (I)求f(x)的最小值; (Ⅱ)设数列{xn}满足ln xn+<1.证明xn存在,并求此极限.
设函数f(x)=ln x+. (I)求f(x)的最小值; (Ⅱ)设数列{xn}满足ln xn+<1.证明xn存在,并求此极限.
admin
2022-09-22
53
问题
设函数f(x)=ln x+
.
(I)求f(x)的最小值;
(Ⅱ)设数列{x
n
}满足ln x
n
+
<1.证明
x
n
存在,并求此极限.
选项
答案
(I)f(x)的定义域为x>0,且f’(x)=[*]令f’(x)=0,解得唯一驻点x=1. 当0<x<1时,f’(x)<0;当x>1时,f’(x)>0. 因此x=1是f(x)的极小值点,并且是最小值点,最小值为f(1)=1. (Ⅱ)由(I)知ln x
n
+[*]≥1,又ln x
n
+[*]<1, 可知[*],即x
n+1
>x
n
.因此数列{x
n
}单调递增. 又由ln x
n
+[*]<1可知ln x
n
<1,得0<x
n
<e,所以数列{x
n
}有上界. 由单调有界数列必收敛,可知[*]x
n
存在,并设其极限值为A. 将ln x
n
+[*]<1两边取极限,得ln A+[*]<1. 将ln x
n
+[*]≥1两边取极限,得ln A+[*]≥1. 因此ln A+[*]=1,解得A=1,即[*]x
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/nDf4777K
0
考研数学二
相关试题推荐
设f(3x+1)=,则∫01f(x)dx=___________.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y"+p(x)y’+q(x)y=f(x)①的3个解,且≠常数,则式①的通解为____________.
求函数z=3aχy-χ3-y3(a>0)的极值______.
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
设α1,α2,α3,α4,α5,它们的下列部分组中,是最大无关组的有________?(1)α1,α2,α3.(2)α1,α2,α4.(3)α1,α2,α5.(4)α1,α3,α4.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设函数数列{xn}满足,证明存在,并求此极限。
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
已知f(x)连续,∫0xtf(x-t)dt=1一cosx,求的值.
设,g(x)=∫01-cosxtant2dt,则当x→0时,f(x)是g(x)的()
随机试题
交通信号包括交通信号灯、交通标志、交通标线和交通警察的指挥。
实行何种所有制结构,是由
《冯谖客孟尝君》选自《________________》。
诊断代谢性酸中毒的主要依据为
脊柱裂时常合并的颅脑异常,下列描述不正确的是
一般来说,儿童身高增长最快的时期是()
水泥稳定粒料基层实测项目中不包含()。
单元组合式现浇钢筋混凝土水池工艺流程中,池壁分块浇筑的前一项施工项目是()
刘某担任省重点科技攻关项目负责人,工作任务尚未完成,不得提出解除聘用合同。()
•YouwillhearpartofaninterviewbetweenthecommercialdirectorofapapercompanycalledSCAandShubhaMadhukar,theinter
最新回复
(
0
)