首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
admin
2021-07-27
52
问题
已知齐次线性方程组(Ⅰ)为
齐次线性方程组(Ⅱ)的基础解系为ξ
1
=[-1,1,2,4]
T
,ξ
2
=[1,0,1,1]
T
.
求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
选项
答案
解得方程组(Ⅰ)的基础解系η
1
,η
2
,于是,方程组(Ⅰ)的通解为k
1
η
1
+k
2
η
2
=k,[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
(k
1
,k
2
为任意常数).由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为l
1
ξ
1
+l
2
ξ
2
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
(l
1
,l
2
为任意常数).为求方程组(Ⅰ)与(Ⅱ)的公共解,令它们的通解相等,即k
1
[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
.从而,得到关于k
1
,k
2
,l
1
,l
2
的方程组[*]对此方程组的系数矩阵作初等行变换,得[*]由此可得,k
1
=k
2
=l
2
,l
1
=0.所以,令k
1
=k
2
=k,方程组(Ⅰ),(Ⅱ)的非零公共解是k[2,-1,1,0]
T
+k[-1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数).并且,方程组(Ⅰ),(Ⅱ)的非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示为k(η
1
+η
2
)和kξ
2
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nLy4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
已知矩阵A相似于矩阵B=则秩(A-2E)与秩(A-E)之和等于【】
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A为m×n矩阵,且r(A)=m,则()
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
A、美托洛尔B、沙丁胺醇C、去甲肾上腺素D、异丙肾上腺素E、克伦特罗以重酒石酸盐供药用
女性26岁,发热、消瘦伴颈部淋巴结无痛性肿大3个月,淋巴结活检为霍奇金病,首选下列哪个方案
玉女煎的功效是
患者,男性,64岁。患糖尿病10年,常规胰岛素6U餐前30分钟用药,合适的注射部位是
关于现行民事执行制度,下列哪些选项是正确的?(2008—卷三—85,多)
入境报检时必须提供的单证有()。
下列选项正确的是()。
被鲁迅称为“史家之绝唱,无韵之离骚”的是:()
RichChildrenandPoorOnesAreRaisedVeryDifferently[A]ThelivesofchildrenfromrichandpoorAmericanfamilieslookmore
A、Takephotostodocumenttheirlikesanddislikes.B、Highlighttheroutethroughgreenpictureframes.C、Pickupwastedplastic
最新回复
(
0
)