首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
已知齐次线性方程组(Ⅰ)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[-1,1,2,4]T,ξ2=[1,0,1,1]T. 求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
admin
2021-07-27
50
问题
已知齐次线性方程组(Ⅰ)为
齐次线性方程组(Ⅱ)的基础解系为ξ
1
=[-1,1,2,4]
T
,ξ
2
=[1,0,1,1]
T
.
求方程组(Ⅰ)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示.
选项
答案
解得方程组(Ⅰ)的基础解系η
1
,η
2
,于是,方程组(Ⅰ)的通解为k
1
η
1
+k
2
η
2
=k,[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
(k
1
,k
2
为任意常数).由题设知,方程组(Ⅱ)的基础解系为ξ
1
,ξ
2
,其通解为l
1
ξ
1
+l
2
ξ
2
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
(l
1
,l
2
为任意常数).为求方程组(Ⅰ)与(Ⅱ)的公共解,令它们的通解相等,即k
1
[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
.从而,得到关于k
1
,k
2
,l
1
,l
2
的方程组[*]对此方程组的系数矩阵作初等行变换,得[*]由此可得,k
1
=k
2
=l
2
,l
1
=0.所以,令k
1
=k
2
=k,方程组(Ⅰ),(Ⅱ)的非零公共解是k[2,-1,1,0]
T
+k[-1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数).并且,方程组(Ⅰ),(Ⅱ)的非零公共解分别由方程组(Ⅰ),(Ⅱ)的基础解系线性表示为k(η
1
+η
2
)和kξ
2
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nLy4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
证明:当x>0时,x2>(1+x)ln2(1+x).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
随机试题
交通信号包括交通信号灯、交通标志、交通标线和交通警察的指挥。
实行何种所有制结构,是由
《冯谖客孟尝君》选自《________________》。
诊断代谢性酸中毒的主要依据为
脊柱裂时常合并的颅脑异常,下列描述不正确的是
一般来说,儿童身高增长最快的时期是()
水泥稳定粒料基层实测项目中不包含()。
单元组合式现浇钢筋混凝土水池工艺流程中,池壁分块浇筑的前一项施工项目是()
刘某担任省重点科技攻关项目负责人,工作任务尚未完成,不得提出解除聘用合同。()
•YouwillhearpartofaninterviewbetweenthecommercialdirectorofapapercompanycalledSCAandShubhaMadhukar,theinter
最新回复
(
0
)