首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A一E)X=0的(A+E)X=0的解. 求A的特征值与特征向量.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A一E)X=0的(A+E)X=0的解. 求A的特征值与特征向量.
admin
2017-10-21
68
问题
设3阶矩阵A的各行元素之和都为2,又α
1
=(1,2,2)
T
和α
2
=(0,2,1)
T
分别是(A一E)X=0的(A+E)X=0的解.
求A的特征值与特征向量.
选项
答案
α
1
=(1,2,2)
T
是(A—E)X=0的解,即Aα
1
=α
1
,于是α
1
是A的特征向量,特征值为1. 同理得α
2
是A的特征向量,特征值为一1. 记α
3
=(1,1,1)
T
,由于A的各行元素之和都为2,Aα
3
=(2,2,2)
T
=2α
3
,即α
3
也是A的特征向量,特征值为2. 于是A的特征值为1,一1,2. 属于1的特征向量为cα
1
,c≠0. 属于一1的特征向量为cα
2
,c≠0. 属于2的特征向量为cα
3
,c≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ndH4777K
0
考研数学三
相关试题推荐
n维列向量组α1,…,αn—1线性无关,且与非零向量β正交.证明:α1,…,αn—1,β线性无关.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn,α1线性无关.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
求矩阵A=的特征值与特征向量.
随机试题
如果两种债券的息票利率、面值和收益率等都相同,则期限较短的债券的价格折扣或升水会()
赵女士,25岁,阴道上皮增生、角化,糖原增多,阴道酸度增强。此时该女士的子宫内膜处于哪期
以下为不合理用药的表现的是
(2013年国家司法考试真题)高某诉张某合同纠纷案,终审高某败诉。高某向检察院反映,其在一审中提交了偷录双方谈判过程的录音带,其中有张某承认货物存在严重质量问题的陈述,足以推翻原判,但法院从未组织质证。对此,检察院提起抗诉。关于再审程序中证据的表述,下列哪
(2008)有关房间的开口与通风构造措施对自然通风的影响。下述哪条不正确?
苏福省(南京大学2004年中国近现代史真题)
案例:力量素质是最基本的素质,许多运动项目的运动员都非常重视力量素质的训练,田径队教练经常安排6RM~10RM蹲杠铃练习来训练短跑和跳跃运动员的下肢力量,而采用30RM来训练长跑运动员的下肢力量。问题:请分析对不同项目运动员进行力量训练时为何要区别
AnswerQuestions71to80byreferringtothebriefson4universitiesinAustralia.AnswereachquestionbychoosingA,B,C,o
Onetypeofpersonthatiscommoninmanycountriesistheonewhoalwaystriestodoaslittleaspossibleandtogetasmuch【C
Inaccordancewiththerelevantlawstheyoung______18arenotapprovedtoserveinthearmy.
最新回复
(
0
)