首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有 P{X≥s+t|X≥s}=P{X≥t} (Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有 P{X≥s+t|X≥s}=P{X≥t} (Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
admin
2018-01-12
91
问题
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有
P{X≥s+t|X≥s}=P{X≥t}
(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
选项
答案
(Ⅰ)已知随机变量X服从指数分布,对于任意的非负实数,根据指数分布的分布函数F(x)=1一e
—λx
,根据结论 [*] 对任意非负实数s及t,有 [*] 因为X是连续的随机变量,根据分布函数的定义,对任意实数x,有 P{X<x}=P{X≤x}=F(x)。 P{X≥t}=1一P{X<t}=1一P{X≤t}=1—F(t)=1一(1一e
—λt
)=e
—λt
, 因此可得P{X≥s+t | x≥s}=P{X≥t}成立。 (Ⅱ)已知电子仪器的使用年数服从指数分布X~e(0.1),则其概率分布函数为 [*] 根据(Ⅰ)的结论, P(X≥s+t|X≥s)=P(X≥t)=e
—λx
, 假设某人买回来的电视机已经用了x年,则它还可以使用五年以上的概率为 P(X≥x+5 | X≥5)=P(X≥5)=e
—0.1×5
=e
—0.5
≈0.606 5。
解析
转载请注明原文地址:https://kaotiyun.com/show/ntX4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=________,b=________。
袋中有a个白球与b个黑球.每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率.
统计资料表明,男性患色盲的概率为5%,现有一批男士做体检.则事件“发现首例患色盲的男士已检查了30名男士”的概率α为______.
设10件产品有4件不合格品,从中任取两件,已知所取的两件产品中有一件是不合格品,则另一件也是不合格品的概率为______.
连续抛掷一枚硬币,第k次(k≤n)正面向上在第n次抛掷时出现的概率为()
同时抛掷三枚匀称的硬币,正面和反面都出现的概率为()
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(I)求Y的期望E(Y)(记E(Y)为b);(Ⅱ)求λ的矩估计量和最大似然估计量;(Ⅲ)利用上述结果求b的最大似然估计量.
已知总体X是离散型随机变量,X可能取值为0,1,2且P{X=2}=(1一θ)2,E(X)=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2…,xn中小于1的个数,求θ的最大似然估计.
随机试题
对于酶活性中心的叙述,恰当的是
迎香穴位于()
利率是一国政府调控宏观经济的重要杠杆,变动利率对经济影响的一般规律是()。
—个实心立体图形如图所示从中挖掉一个圆柱体,然后从任意面剖开,下面哪一项不可能是该立体图形的截面?
“笔祸”事件
Thesafarihunterwasnearly______todeathbyaherdofelephants.
(1990年)过点M(1,2,一1)且与直线垂直的平面方程是____________.
局域网不提供()服务。
窗体在屏幕上显示后有______种方法可以清除它。
将考生文件夹下GANG文件夹复制到考生文件夹下的UNIT文件夹中。
最新回复
(
0
)