首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有 uTb=u1b1+u2b2+…+umbm=0.
admin
2020-03-10
63
问题
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且A
T
y=0的任何解向量u均有
u
T
b=u
1
b
1
+u
2
b
2
+…+u
m
b
m
=0.
选项
答案
必要性.把A按列分块为A=[α
1
,α
2
,…,α
n
],其中α
j
(j=1,2,…,n)都是m维列向量,由于方程组Ax=b有解,所以存在向量[k
1
,k
2
,…,k
n
]
T
使 b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
. 又因A
T
=[α
1
,α
2
,…,α
n
]
T
=[*],故满足方程组 A
T
y=0的任何解向量u均有α
j
T
u=0(j=1,2,…,n).因此, u
T
b=b
T
u=k
1
α
1
T
u+k
2
α
2
T
u+…+k
n
α
n
T
u=0. 充分性.由于满足方程组A
T
y=0的任何解向量U均有u
T
b=b
T
u=0,所以u满足方程组 [*] 令r(A)=r,则,r(A
T
)=r.从而方程组A
T
y=0的基础解系含m—r个线性无关的解向量.因为满足方程组A
T
y=0的任何解向量u都满足方程组①,以及满足方程组①的任何解向量u必满足方程组A
T
y=0,所以方程组①与方程组A
T
y=0同解,故方程组①的解空间的维数为m一r.于是 [*]=m一(m一r)=r. 因而r(A)=r[A┆b]=r, 故非齐次线性方程组Ax=b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/oAD4777K
0
考研数学三
相关试题推荐
设a为常数,则级数
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
已知α=(1,一2,3)T是矩阵的特征向量,则()
设有平面闭区域,D={(x,y)|—a≤x≤a,x≤y≤a},D1={(x,y)10≤x≤a,x≤y≤a},则(xy+cosxsiny)dxdy=()
关于二次型f(x1,x2,x3)=,下列说法正确的是()
下列条件不能保证n阶实对称阵A正定的是()
求下列数列极限:
求∫(arccosx)2dx.
随机试题
A.散发性发病B.小流行C.流行D.大流行E.暴发流行传染病病例发病时间的分布高峰集中于一个短时间之内者称为()
初孕妇,34周孕,既往有再生障碍性贫血病史,现血红蛋白为50g/L,血小板45×109/L,应采取的措施是
碳酸氢钠溶液煮沸灭菌时,其煮沸时间一般为
患者已确诊为骨巨细胞瘤,局部皮肤表浅静脉怒张,肿胀与压痛均显著,触诊有乒乓球样感觉。X片:骨皮质已破坏,断裂。病理报告:骨巨细胞瘤Ⅲ级。治疗应选择()
下列选项中,不属于合理经济规模衡量指标的是()。
砖基础墙的防潮层位置宜在室内地面标高()处。
税务机关欠税清缴制度包括()。
ItisonOctober1,2009thatthePeoplesRepublicofChina_______its60thbirthday.
公文如有附件,按顺序应当注明附件的()。
简述乔姆斯基的转换生成语法理论。
最新回复
(
0
)