[2012年] 已知曲线L:,其中函数f(t)具有连续导数,且f(0)=0,f’(t)>0(0<t<π/2).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求此曲线L与x轴,与y轴无边界的区域的面积.

admin2019-04-08  32

问题 [2012年]  已知曲线L:,其中函数f(t)具有连续导数,且f(0)=0,f’(t)>0(0<t<π/2).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求此曲线L与x轴,与y轴无边界的区域的面积.

选项

答案设切点坐标(x,y)=(f(t),cost)(0≤t<π/2),则切线的斜率为y’x=(一sint)/f’(t),切线方程为y—cost=[(一sint)/f’(t)][x-f(t)]. 令y=0,代入切线方程得到切线与x轴交点的横坐标x=f(t)+[f’(t)cost]/sint,则切点与交点的距离为 [*] 从而 [*] 因f(0)=0,故C=0,所以f(t)=ln|sect+tant|-sint.又由面积的计算公式可得 S=∫0π/2y(t)dx(t)=∫0π/2costf’(t)dt=[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/oC04777K
0

最新回复(0)