首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证: 曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证: 曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x0)2)(x→x0).
admin
2019-02-26
84
问题
设f(x),g(x)在x=x
0
某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:
曲线y=f(x)和y=g(x)在点(x
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x
0
)2)(x→x
0
).
选项
答案
相交与相切即f(x
0
)=g(x
0
),f′(x
0
)=g′(x
0
).若又有曲率相同,即 [*],亦即|f″(x
0
)|=|g″(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f″(x
0
)=g″(x
0
)=0或f″(x
0
)与g″(x
0
)同号,于是f″(x
0
)=g″(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率[*]f(x
0
)一g(x
0
)=0,f′(x
0
)一g′(x
0
)=0,f″(x
0
)一g″(x
0
)=0. [*]f(x)一g(x)=f(x
0
)一g(x
0
)+[f(x)一g(x)]′|
x=x
0
(x—x
0
)+[*][f(x)一g(x)]″|
x=x
0
(x一x
0
)
2
+o(x一x
0
)
2
=o((x一x
0
)
2
) (x一x
0
). 即当x→x
0
时f(x)一g(x)是比(x一x
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/oF04777K
0
考研数学一
相关试题推荐
设的一个特征向量.(I)求常数a,b的值及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
过点(2,3)作曲线y=x2的切线,该曲线和切线围成的图形的面积为_______.
曲面上任一点的切平面在三个坐标轴上的截距的平方和为()
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设随机变量X服从正态分布N(μ,42),Y~N(μ,52);记P1=P{X≤μ一4},P2=P{Y≥μ+5},则
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=3α1+5α2-α3的通解。
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
(2013年)已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的三个解,则该方程的通解为y=____________。
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设f(x)=则下列结论(1)x=1为可去间断点.(2)x=0为跳跃间断点.(3)x=-1为无穷间断点.中正确的个数是
随机试题
“利润分配”账户的明细账有()
为了及时治疗急性中毒,下列哪项可作为中毒诊断的主要依据
决定施工合同的支付程序中是否有预付款的因素不包括( )。
李小姐由于目前小孩才一岁多一点,李小姐全职在家带小孩,暂时没有工作。每天看着小孩长大,李小姐夫妻俩非常幸福,但是也慢慢为日渐增加的生活开支和家庭理财而感到焦虑。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成员二、月收支状况李小姐的
下列交易不具有规避风险、提供套期保值功能的有()。
求由两个圆柱面x2+y2=a2与z2+x2=a2所围成立体的体积。
法与政治都是一定经济基础上的上层建筑,都反映一定阶级的意志和利益,二者相互作用,密切关联。关于二者关系的以下论述,错误的有()。
A、 B、 C、 A图片A是茶,图片B是可乐,图片C是蛋糕。故本题答案为A。
AlthoughtherearemanyskillfulBraillereaders,thousandsofotherblindpeoplefinditdifficulttolearnthatsystemTheyar
InanefforttomakeupforsomeoftheglaringlimitationsofIQtests,researchershavebeguntodevelopnewwaystomeasuret
最新回复
(
0
)