首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实反对称矩阵,证明E+A可逆.
设A是n阶实反对称矩阵,证明E+A可逆.
admin
2017-06-08
44
问题
设A是n阶实反对称矩阵,证明E+A可逆.
选项
答案
A是一个抽象矩阵,因此用行列式证明是困难的.下面的证明思路是通过(E+A)X=0只有零解来说明结论. 设η是一个n维实向量,满足(E+A)η=0,要证明η=0.用η
T
左乘上式,得 η
T
(E+A)η=0,即η
T
η=-η
T
Aη 由于A是反对称矩阵,η
T
Aη是一个数,η
T
Aη=(η
T
Aη)
T
=-η
T
Aη,因此η
T
Aη=0,于是 η
T
η=0 η是实向量,(η,η)=η
T
η=0,从而η=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oct4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
[*]
[*]
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设f(x)在[0,1]上连续,取正值且单调减少,证明
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
A.前路开眶术经皮肤切口B.前路开眶术经结膜切口C.前路开眶术外眦切开,可经下穹窿结膜切口D.Stallard切口E.Berke切口
某女,左委中穴处木硬肿痛,小腿屈伸困难,行动不利,身热纳呆,脉濡数,治疗宜选
我国统计调查制度由()组成。
项目可行性研究中的初步可行性研究工作的性质是________。
新中国成立后,中国共产党把独立自主、自力更生运用到外交领域和经济建设方面,形成的方针、政策是:
养痈:成患
我国最早的地理学著作《禹贡》,实际上产生于战国后期,但对历史地理现象的注意和记录在更早的著作中已可找到例证。成书于公元1世纪的《汉书.地理志》既是一篇内容丰富的当代地理著作,也堪称中国第一篇历史地理著作,因为它所记述的对象不限于西汉一朝,而是“采获旧闻,考
[A]Convincingevidence;USislosingitsappealintheeyesofmultinationals[B]Biggesthindrance:USdividedpoliticalsystem
在VisualFoxPro中,查询设计器和视图设计器很像,如下描述正确的是
有以下程序#include<stdio.h>#include<string.h>structS{charname[10];};voidchange(structS*data,intvalue){
最新回复
(
0
)