首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实反对称矩阵,证明E+A可逆.
设A是n阶实反对称矩阵,证明E+A可逆.
admin
2017-06-08
42
问题
设A是n阶实反对称矩阵,证明E+A可逆.
选项
答案
A是一个抽象矩阵,因此用行列式证明是困难的.下面的证明思路是通过(E+A)X=0只有零解来说明结论. 设η是一个n维实向量,满足(E+A)η=0,要证明η=0.用η
T
左乘上式,得 η
T
(E+A)η=0,即η
T
η=-η
T
Aη 由于A是反对称矩阵,η
T
Aη是一个数,η
T
Aη=(η
T
Aη)
T
=-η
T
Aη,因此η
T
Aη=0,于是 η
T
η=0 η是实向量,(η,η)=η
T
η=0,从而η=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oct4777K
0
考研数学二
相关试题推荐
20π
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
设A为n阶可逆矩阵,则下列结论正确的是().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
随机试题
求广义积分∫1+∞
重金属中毒最好选用()解毒
根据《公开地图内容表述若干规定》,下列设施和内容中,不得在公开地图产品上表示的是()。
中江贸易。(香港)有限公司系中江国际贸易(公司)派驻香港的全资子公司,受总公司的委托为天津中江服装饰品厂对外签约订货。本提单之运输工具于2001年1月16日向天津海关申报进口。“贸易方式”栏应填()。
证券发行市场的作用不包括()。
他在看小说时睡着了。Hefellasleep______readinganovel.
近期股票市场连续大涨,似乎意味着一个新的全民炒股的时代又来了。一般说来,当通货膨胀温和上升时,股市呈现上升趋势;而当通货膨胀率突破一定的临界点之后,则会引发货币政策的紧缩,从而带来股市的下行;直到通货膨胀回落到较低水平乃至发生通货紧缩时,货币政策往往会再度
甲、乙、丙、丁等10位同学排成一排,则甲、乙正好排在两头的概率为多少?
Whatdoesitmeantobeintelligent?Mostpsychologistsagreethatabstractreasoning,problemsolving,andtheabilitytoacqui
Sincewearesocialbeings,thequalityofourlivesdependsinlargemeasureonourinterpersonalrelationships.Onestrengtho
最新回复
(
0
)