首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2015-07-10
32
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令[*], 构造辅助函数φ(x)=f(x)一k(x一a
1
)(x一a
2
)…(x一a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)一n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ojU4777K
0
考研数学三
相关试题推荐
在庆祝中国共产党成立100周年大会上,习近平总书记围绕以史为鉴、开创未来,鲜明提出“九个必须”的根本要求。下列不属于“九个必须”根本要求的是()。
2021年1月14日,由我国自主研发建造的全球首座十万吨级深水半潜式生产储油平台——“深海一号”能源站交付启航。“深海一号”能源站创造了3项世界级创新,下列有关说法错误的是()。
国家主席习近平2021年12月22日下午在中南海瀛台会见来京述职的香港特别行政区行政长官林郑月娥。习近平指出,实践证明,()符合“一国两制”原则,符合香港实际,为确保“一国两制”行稳致远、确保香港长期繁荣稳定提供了(
人民代表大会制度建立60多年来,在实践中不断得到巩固和发展,展现出蓬勃生机活力。历史充分证明,人民代表大会制度是
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x,y)处的切线的斜率等于该点的横坐标的平方;(2)曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分;(3)曲线上点P(x,y)处的切线与y轴的交点为Q,线段PQ的长度为2,
随机试题
相比于2015年,2018年创新投入指数4个评价指标中增幅在20%与50%之间的有:
方向控制回路是通过控制进入执行元件液流的通、断或变向来实现液压系统执行元件的起动、停止或改变运动方向的回路。()
以下何者是儿童(急性)ITP和成人(慢性)ITP都具有的特征
.少尿是指24小时尿量少于
某企业生产的左氧氟沙星片的检验报告(部分)下如表:以上,检验结果符合标准规定的项目的是()。
ACEI对动脉粥样硬化具有显著缓解作用的机制是
屋面防水等级为工级,当采用卷材,涂料与刚性防水材料复合设防时,其施工顺序为()。
调查显示,在既定月份,18~65岁的所有妇女有52%属于劳动力群体(在家庭以外被雇用);根据这些调查,一位市场调研人员得出结论认为,18~65岁的所有妇女中48%的人一年到头都是全职的家务劳动者。下面哪个,如果正确,会严重地削弱这位调研人员的结论?
结合材料,回答问题:1971年10月25日,第26届联合国大会以压倒多数票通过了阿尔巴尼亚、阿尔及利亚等23国提出的要求恢复中国在联合国的一切合法权利,并立即把蒋介石集团(“中华民国”)的代表从联合国及其所属一切机构中驱逐出去的提案即2758号决议。决
PassageOne
最新回复
(
0
)