首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. 求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. 求a,b的值及方程组的通解.
admin
2018-08-03
70
问题
已知非齐次线性方程组
有3个线性无关的解.
求a,b的值及方程组的通解.
选项
答案
对增广矩阵[*]施行初等行变换: [*] 因r(A)=2,故有 4—2a=0,4a+b一5=0 由此解得a=2,b=一3.此时 [*] 由此可得方程组的用自由未知量表示的通解为 [*](x
3
,x
4
任意) 令x
3
=k
1
,x
4
=k
2
,则得用对应齐次线性方程组的基础解系表示的通解为 [*] 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oug4777K
0
考研数学一
相关试题推荐
设向量场A=2x3yzi—x2y2zj一x2yz2k,则其散度divA在点M(1,1,2)沿方向l={2,2,一1}的方向导数(divA)|M=___________.
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
下列命题不正确的是().
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为___________.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<e(x>0).
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设W={(x1,x2,…,xn)|x1一2x2+x3=0},求向量空间W的维数及一组规范正交基.
已知正态总体X~N(a,相互独立,其中4个分布参数都未知.设X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,样本均值分别为样本方差相应为,则检验假设H0:a≤b使用t检验的前提条件是
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
随机试题
四时不正之气乘虚侵入,致病较重者,称为
法国公司甲与中国公司乙在美国签订电子商务合同,双方约定发生争议适用德国法律,如甲乙双方发生争议,根据我国法律,应适用()
凸阵探头,临床常用于何部位的检查
关于中标人的公示,下列说法正确的是()。
泡沫灭火剂按泡沫体积与发生泡沫混合液体积两者之比分为三类,其中高倍数泡沫中两者之比为()。
在未设借贷栏的多栏式账页中,可以用红字登记减少数。()
2016年8月8日,甲、乙、丙、丁共同出资设立了A有限责任公司(简称“A公司”)。公司章程对股权转让事项未做规定。2017年6月8日,甲与戊订立合同,约定将其所持有的全部股权以20万元的价格转让给戊。甲于同日分别向乙、丙、丁发短信,告知拟转让股权给戊以及转
给定资料资料1“分类型垃圾桶网上卖断货了”“工作太忙只能求助爸妈或保姆,家人多了很多话题”“公司里个人座位旁的垃圾桶都没有了,扔垃圾人都跑瘦了”……近日,强制垃圾分类成为网络热门话题,一些个人生活习惯悄然改变。上海市民宋女士说,为减少垃
下列谚语中,描绘云贵高原的是:
Nowadaysyoucan’tbuyanythingwithoutthenbeingaskedtoprovidearatingofacompany’sperformanceonafive-starscale.
最新回复
(
0
)