首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
admin
2020-03-01
53
问题
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是 ( )
选项
A、A—E;A+E
B、A—E;(A+E)
-1
C、A—E;(A+E)
*
D、A—E;(A+E)
T
答案
D
解析
由于(E+A)x=0只有零解,知r(E+A)=n,所以存在(E+A)
-1
且|E+A|≠0.
方法一 因
(A+E)(A—E)=A
2
一E=(A—E)(A+E), (*)
故A+E,A—E可交换,故(A)成立.
(*)式两端各左边、右边乘(A+E)
-1
,得
(A—E)(A+E)
-1
=(A+E)
-1
(A—E), (**)
故(A+E)
-1
,A—E可交换,故(B)成立.
(**)式两边乘|A+E|(数),得
(A—E)(A+E)
*
=(A+E)
*
(A—E),
故(A+E)
*
,A—E可交换,故(C)成立.
由排除法知,应选(D),即(A+E)
T
,A~E不能交换.
方法二 (A+E)(A—E)=(A+E)(A+E一2E)=(A+E)
2
一2(A+E)
=(A+E一2E)(A+E)=(A—E)(A+E).
(A+E)
-1
(A—E)=(A+E)
-1
(A+E一2E)=(A+E)
-1
(A+E)一2(A+E)
-1
=(A+E)(A+E)
-1
一2(A+E)
-1
=(A+E一2E)(A+E)
-1
=(A—E)(A+E)
-1
.
同理 (A+E)
*
(A—E)=(A—E)(A+E)
*
.
故应选(D).
方法三 (D)不成立,可举出反例,如取
则
而
故(A+E)
T
(A-E)≠(A-E)(A+E)
T
,即(D)不成立.
转载请注明原文地址:https://kaotiyun.com/show/oyA4777K
0
考研数学二
相关试题推荐
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
设a为常数,f(x)=aex一1一x一,则f(x)在区间(一∞,+∞)内的零点个数情况为()
设A是m×n阶矩阵,下列命题正确的是().
累次积分可以写成()
已知齐次方程组同解,a______,b_______,它们的通解________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______
[2006年]设数列{xn}满足0<x1<π,xn-1=sinxn(n=1,2,…).证明xn存在,并求该极限.
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(1)的逆命题成立。
以下四个命题,正确的个数为()①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
随机试题
在VIS中,应用最广泛、出现频率最多的要素是()。
收到长江公司投入一台机床,评估价为500000元。
下列中最常见的良性卵巢性索间质肿瘤是
患者男,21岁,1小时前因车祸致胸部挤压伤,来院急诊。体检:神清,气急,血压低,脉率快,眼睑结膜及头面部皮下广泛紫罗蓝色点状淤血斑,双肺听诊散在湿啰音。胸片未见明显异常。最可能的诊断是
重度创伤病人早期死亡的常见病因是
根据《电力法》的规定,用户使用的电力电量,以计量检定机构依法认可的用电计量装置的记录为准。用户受电装置的设计、施工安装和运行管理,应当符合()。
WhichisBritain’sfirstwomanprimeminister?
下面概念中,不属于面向对象方法的是()。
Smallboysare______questioners.Theyaskquestionsallthetime.
ThehistoryofindigenouseducationprovisionthroughoutAustralia’sremoteareasisrepletewithinstancesofneglect,infras
最新回复
(
0
)