设f(x)连续,f(0)=0,f’(0)=1,求[∫一aaf(x+a)dx一∫一aaf(x一a)dx].

admin2016-09-30  12

问题 设f(x)连续,f(0)=0,f’(0)=1,求[∫一aaf(x+a)dx一∫一aaf(x一a)dx].

选项

答案一aaf(x+a)dx一∫一aaf(x一a)dx=∫一aaf(x+a)d(x+a)一∫一aaf(x一a)d(x一a) =∫02af(x)dx一∫一2a0f(x)dx=∫02af(x)dx+∫0一2af(x)dx, 又由ln(1+a)=a一[*]+o(a2)得a一ln(1+a)~[*] 于是[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/pAT4777K
0

最新回复(0)