首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-23
33
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
4
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/plc4777K
0
考研数学一
相关试题推荐
已知y1=xex+e2x,y2=xex-e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x,y)。证明:对L内的任意分段光滑的有向简单闭曲线L,都有
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。计算并化简PQ。
设向量组α1=(a,0,10)T,α2=(—2,1,5)T,α3=(—1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
已知A=有三个线性无关的特征向量,则x=________。
设α1,α2,…,α3为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设A=有三个线性无关的特征向量,则a=_______.
随机试题
设备工程中的总承包主要形式有()。
简述《玩偶之家》主人公娜拉形象的主要特征。
肾小球源性血尿产生的主要原因是
A.癌细胞团中央可见角化珠B.癌细胞团漂浮在黏液内C.黏液将癌细胞核推向一侧D.癌细胞呈条索状排列E.癌细胞形成乳头结构(2001年第100题)印戒细胞癌的组织学表现
关于痢疾杆菌,正确的是
化脓性颌骨骨髓炎的感染途径有()。
某建筑企业8月购买钢材8万元,土地使用权5亿元,小型机具价值6万元,某公司发行的债券200万元。根据企业会计准则及其相关规定,属于无形资产的是()。
定期存款的储户如果在存款到期前要求提前支取,则会受到限制,但不会使利息受到损失。()
方方在Excel中填写社团申请表,若想快速输入当前日期为申请日期,可以使用快捷键_________。
设则d2y/dx2=_______.
最新回复
(
0
)