首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-23
35
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
4
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/plc4777K
0
考研数学一
相关试题推荐
求曲线在点(1,-2,1)处的切线及法平面方程。
设函数f(x,y)可微,且f(1,1)=1,fx’(1,1)=a,fy’(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ’(1)=__________。
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:存在一点ξ∈(a,b),使得f’(ξ)+λf(ξ)=0。
设y=y(x)由方程组所确定,则
设常数k>0,函数在(0,+∞)内的零点个数为()
向量组α1=(1,—2,0,3)T,α2=(2,—5,—3,6)T,α3=(0,1,3,0)T,α4=(2,—1,4,7)T的一个极大线性无关组是_______。
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求求Bx=0的通解。
设A=有三个线性无关的特征向量,则a=_______.
随机试题
A.前路开眶术经皮肤切口B.前路开眶术经结膜切口C.前路开眶术外眦切开,可经下穹窿结膜切口D.Stallard切口E.Berke切口
某女,左委中穴处木硬肿痛,小腿屈伸困难,行动不利,身热纳呆,脉濡数,治疗宜选
我国统计调查制度由()组成。
项目可行性研究中的初步可行性研究工作的性质是________。
新中国成立后,中国共产党把独立自主、自力更生运用到外交领域和经济建设方面,形成的方针、政策是:
养痈:成患
我国最早的地理学著作《禹贡》,实际上产生于战国后期,但对历史地理现象的注意和记录在更早的著作中已可找到例证。成书于公元1世纪的《汉书.地理志》既是一篇内容丰富的当代地理著作,也堪称中国第一篇历史地理著作,因为它所记述的对象不限于西汉一朝,而是“采获旧闻,考
[A]Convincingevidence;USislosingitsappealintheeyesofmultinationals[B]Biggesthindrance:USdividedpoliticalsystem
在VisualFoxPro中,查询设计器和视图设计器很像,如下描述正确的是
有以下程序#include<stdio.h>#include<string.h>structS{charname[10];};voidchange(structS*data,intvalue){
最新回复
(
0
)