首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设随机变量x服从指数分布e(λ),证明:对任意非负实数s及t,有 P(X≥s+t|X≥s)=P(X≥t). 这个性质叫做指数分布的无记忆性. (Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上
(I)设随机变量x服从指数分布e(λ),证明:对任意非负实数s及t,有 P(X≥s+t|X≥s)=P(X≥t). 这个性质叫做指数分布的无记忆性. (Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上
admin
2016-01-12
49
问题
(I)设随机变量x服从指数分布e(λ),证明:对任意非负实数s及t,有
P(X≥s+t|X≥s)=P(X≥t).
这个性质叫做指数分布的无记忆性.
(Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上的概率.
选项
答案
(I)已知随机变量X服从指数分布,对于任意的非负实数,根据指数分布的分布函数F(x) =1一e
-λx
,根据结论 [*] 对任意非负实数s及t,有 [*] 因为X是连续的随机变量,根据分布函数的定义,对任意实数x,有 P(X<x)=P(X≤x)=F(x). P(X≥t)=1一P(X<t)=1一P(X≤t)=1一F(t)=1一(1一e
-λt
)=e
-λt
,因此可得P(x≥s+t|X≥s)=P(X≥t)成立. (Ⅱ)已知电子仪器的使用年数服从指数分布X—e(0.1),则其概率分布函数为 [*] 根据(I)的结论, P(X≥s+t |X≥s)=P(X≥t)=e
-λt
, 假设某人买回来的电视机已经用了x年,则它还可以使用五年以上的概率为 P(X≥x+5 | X≥5)=P(X≥5)=e
-0.1×5
=e
-0.5
≈0.6065.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppU4777K
0
考研数学三
相关试题推荐
五四运动是中国近代史上一个划时代的事件,在近代以来中华民族追求民族独立和发展进步的历史进程中具有里程碑的意义。下列关于五四运动的说法,正确的是
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
包含着新民主主义革命和社会主义革命的双重性质事件的是()。
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
设X,Y是相互独立的随机变量,其分布函数分别为FY(x)、FY(y),则Z=min(X,Y)的分布函数是().
随机试题
纵隔淋巴结肿大常见于下列哪种疾病:()
比较不同个体之间肺弹性阻力大小的指标是
某企业职工张三,因工伤住院。下列相关说法正确的是:()
大中型建设项目的竣工决算报表由下列()部分组成。
下列关于项目质量控制复核的说法中.错误的是()。
20世纪六七十年代,为促进教育机会均等,英国工党政府将文法学校、技术中学和现代中学合并组建成新型中学。这种中学是()。
A.上颌中切牙B.上颌前磨牙C.上颌第二磨牙D.下颌前磨牙E.上颌第三磨牙寻找颏孔的标志是()。
来週の水曜日までに作文を出してください。出し
Thispassagetellsusthat______.A"whitelie"means______.
A、Friends.B、Coworkers.C、Interviewerandinterviewee.D、Doctorandpatient.C应聘面试对话的一个重要特征是:面试人主要提问,受试人主要回答问题,对话内容以学习背景、工作经历为主,
最新回复
(
0
)