首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
62
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
无穷级数的收敛区间为_____.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f”(ξ)=g”(ξ).
设f(x)在[0,+∞)连续,且证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0.
设数列{an}满足条件:a0=3,a1=1,an-2一n(n—1)an=0(n≥2).S(x)是幂级数的和函数.(1)证明:S”(x)一S(x)=0;(2)求S(x)的表达式.
一商家销售某种商品的价格满足关系P=7-0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
设随机变量X和Y均服从B(1,),且D(X+Y)=1,则X与Y的相关系ρ=________.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
(2008年)求极限
(2017年)计算积分其中D是第一象限中以曲线与x轴为边界的无界区域.
(2017年)某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ2)。该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n),利用
随机试题
下列职权不由全国人大常委会行使的是()
A.严格隔离B.消化道隔离C.保护性隔离D.呼吸道隔离E.血液-体液隔离脊髓灰质炎患者应采取
田老太太,诊断为心力衰竭,长期服用洋地黄。一日,护士诊脉时发现患者脉搏有异常改变,她最可能出现
患者,男,24岁。近3年来反复餐后3~4小时上腹痛,持续至下次进餐后才缓解。应首先考虑的是
在一起公诉案件的开庭审理时,被告人申请出庭的某公诉人回避,此时,有权对该公诉人是否应予回避作出决定的是()。
回顾历史,我们两国经济和文化的交流已经______了一千多年。
根据《中华人民共和国银行业监督管理法》的规定,国务院银行业监督管理机构对银行业金融机构的董事和高级管理人员实行()。
日前,某市推出了读书节活动,相比往届,本次读书节对传统项目予以保留,同时特别融入了“家风”专题等。并在地铁中开出一列书香专列,列车上印有名人语录、名文摘录,爱好者可以在此列车上吟诗作对。有专家推测,此次读书节有助于增加本市图书的销售量。以下哪项如果为真,不
在我国,国务院与地方各级国家行政机关之间的关系()。(2010单17)
Onmylastvisit,aboutthreemonthsago,mydoctorhadtoldmethatasa6-foot-tall,39-year-oldman,Ishouldweigharound18
最新回复
(
0
)