首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
61
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时行f’(x)<0,f”(x)>0,则当x>0时,有()
微分方程的通解为y=________.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值.
证明当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
曲线y=e-xsinx(0≤x≤3π)与x轴所围成图形的面积可表示为()
设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y-Z的相关系数.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
(2017年)设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则A∪B与C相互独立的充要条件是()
(2017年)求
(2017年)设a0=1,a1=0,的和函数.(Ⅰ)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
随机试题
神经鞘磷脂的化学组成不包括
A.肌张力丧失B.胃肠蠕动减弱C.循环功能减退D.呼吸困难E.疼痛播放柔和的轻音乐,主要针对临终病人的哪项变化
因为食用某品牌奶粉后婴儿出现不适症状,甚至有婴儿死亡。婴儿父母提起民事诉讼,因人数太多,且分布在全国各地。对于本案,下列哪些说法不正确?
关于梁中钢筋的保护层厚度的说法,正确的是()。
根据民事诉讼法律制度的规定,下列有关人民法院适用普通程序审理一审案件期限的各项表述中,正确的是()。
斯坎伦计划、拉克收益分享计划及改进生产盈余计划三者的相同点是()。
小明今天提前放学,步行回家10分钟的时候遇见开车接他的爸爸,于是上车一起回家,但回家时间仍比以往晚了1分钟,原因是今天爸爸下班晚了7分钟。那么,小明今天提前()分钟放学。
在对社会主义建设道路的探索中,为了搞好经济建设,提出的一系列方针和原则中,不包括()。
Thosedaysaregone,eveninHongKonginParagraph1suggeststhat______.Accordingtothepassage,whichofthefollowingis
甲于深夜到某办公大楼行窃时,被保安王某发现,王某拦住甲,甲将王某打昏,致其轻伤,随后逃跑。甲的行为应认定为()(2013年非法学基础课多选第43题)
最新回复
(
0
)