首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞ f(x)dx必收敛,且∫-∞+∞ f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞ f(x)dx必收敛,且∫-∞+∞ f(x)
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞ f(x)dx必收敛,且∫-∞+∞ f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞ f(x)dx必收敛,且∫-∞+∞ f(x)
admin
2015-07-22
71
问题
以下4个命题,正确的个数为 ( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,∫
-∞
+∞
g(x)dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散.
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
-∞
+∞
f(x)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
-∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx.
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是
∫
-∞
0
f(x)dx=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+ g(x)]dx收敛,这表明命题③是真命题。故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/q5U4777K
0
考研数学三
相关试题推荐
垄断资本在世界范围的扩展,反映了资本主义发展的必然逻辑,也反映了资本主义发展的本质。垄断资本向世界范围扩展的经济动因是
1947年12月,毛泽东在总结中国革命的历史经验时指出:“中国新民主主义的革命要胜利,没有一个包括全民族绝大多数人口的最广泛的统一战线,是不可能的。”从中国革命胜利的历史经验看,巩固和扩大统一战线的关键是
“三个代表”重要思想是在科学判断党的历史方位和总结历史经验的基础上提出来的,此时我们党历经革命、建设和改革()。
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
将函数分别展开成正弦级数和余弦级数.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
将函数f(x)=x-1,(0≤x≤2)展开成周期为4的余弦级数
讨论下列级数在指定的区间内是否一致收敛
随机试题
苏武归汉后见到的是
女性,30岁。2年前始有发作性心慌,心悸,偶有晕厥,每年发作1~3次不等,发作时脉搏约200次/分,未经心电图证实。为明确诊断,最佳选择的检查手段为
经肺部吸收的为( )。有溶液型、乳剂型、混悬型的为( )。
甲围攻打假车队,抢走并砸坏摄像机,抢回制假机器和假烟的行为构成:
对含有少量碎石的黏性土,欲求其天然密度宜采用()。
下列建筑不属于一类建筑的有()。
夫妻财产约定的内容包括夫妻财产约定的生效、变更或撤销约定的程序问题等,其所使用的法律是( )。
某企业为增值税一般纳税人,2000年5月发生以下业务:(1)从农业生产者手中收购玉米40吨,每吨收购价3000元,共计支付收购价款120000元。企业将收购的玉米从收购地直接运往异地的某酒厂生产加工药酒,酒厂在加工过程中代垫辅助材料款15000元。药酒加
儒家是中国古代最有影响的学派,对中国、东亚、东南亚乃至全世界都产生过深远的影响。下列有关儒家思想的说法不正确的是()。
下列属于反应时的是()
最新回复
(
0
)