首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=-1,0,1),Y的概率密度为 记Z=X+Y. 求Z的概率密度fZ(z).
[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=-1,0,1),Y的概率密度为 记Z=X+Y. 求Z的概率密度fZ(z).
admin
2019-05-11
62
问题
[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=-1,0,1),Y的概率密度为
记Z=X+Y.
求Z的概率密度f
Z
(z).
选项
答案
因X的可能取值为-1,0,1,而f
Y
(y)取非零值的自变量范围为0≤y≤1,而-1≤x≤1,故-1≤z=x+y≤2.于是分下列几种情况进行讨论. ①当z≥2时,X,Y的所有取值均满足上式,故 F(z)=P(Z≤z)=P(X+Y≤z)=1. ②当z=x+y<-1时,X,Y只能取空值,则P(X+Y≤z)=P([*])=0. 当-1≤z<2时,下用全概公式求出F
Z
(z)的表示式: F
Z
(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=-1)P(X=-1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1) =(1/3)[P(y≤z+1)+P(Y≤z)+P(Y≤z-1)]. 考虑到Y在[0,1]上服从均匀分布,将-1≤z<2再细分为三个区间求出上式概率. ③当-1≤z≤0时,有0≤z+1≤1,-2≤z-l≤-1,故 P(Y≤z)=P(Y≤z-1)=0. [*] ④当0≤z<1时,有1≤z+1<2,-1<z-1<0,故P(Y≤z-1)=0. [*] ⑤当1≤z<2时,有2<z+1<3,0≤z-1<1,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qIJ4777K
0
考研数学三
相关试题推荐
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为()
设随机事件A与B互不相容,且P(A)>0,P(B)>0,则下列结论中一定成立的有()
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.设随机变量U=max{X,Y},V=min{X,Y}.(1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;(3)判断U,V是否相互独立?(4)求P(U=V).
设10件产品中有4件不合格,从中任取两件,已知两件中有一件不合格,则另一件产品也不合格的概率为______.
设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=______.
求幂级数.
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=-1围成的区域.
求幂级数的和函数.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
随机试题
领导者针对职工不愿意学习的倾向,开展思想政治工作。下列做法中不正确的是
患儿2岁,身高70cm,智力低下,塌鼻梁、舌体厚大,腹胀、便秘,有脐疝。为明确诊断,首先应选择的检查是
妊娠期心脏病患者中下列哪项不是早期心衰体征
因土地侵权纠纷起诉的,人民法院()。
乡、民族乡、镇的撤销、设置和政府驻地搬迁的批准机关是()。
牵牛花没有挺拔的躯干,却凭借攀附篱笆墙展示了自己的美丽;篱笆墙没有靓丽的外表,却凭借牵牛花的攀附成了一道风景。请谈谈这段话给你的启示。
2009年1月6日,中国海军护航舰艇编队顺利抵达亚丁湾海域执行护航任务。亚丁湾位于()
丈夫和妻子讨论孩子上哪所小学为好。丈夫称:根据当地教育局最新的教学质量评估报告,青山小学教学质量不高。妻子却认为:此项报告未必客观准确,因为撰写报告的人中有绿水小学的人员,而绿水小学在青山小学附近,两所学校有生源竞争的利害关系,因此青山小学的教学质量其实是
2015年9月,习近平在纽约联合国总部发表重要讲话时指出“当今世界,各国相互依存、休戚与共。我们要继承和弘扬联合国宪章的宗旨和原则,构建以合作共赢为核心的新型国际关系,打造人类命运共同体。”提出构建人类命运共同体思想,具有鲜明的时代背景。具体地说
静态数据成员在()进行初始化。
最新回复
(
0
)