首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
admin
2020-09-25
169
问题
设n元线性方程组Ax=b,其中
(1)证明行列式|A|=(n+1)a
n
.
(2)当a为何值时,该方程组有唯一解?求x
1
.
(3)当a为何值时,该方程组有无穷多解?求通解.
选项
答案
(1)记D
n
=|A|.用数学归纳法证明D
n
=(n+1)a
n
. ①当n=1时,D
1
=2a,结论成立. ②当n=2时,D
2
=[*]=3a
2
,结论成立. 假设结论对小于n的情况成立,将D
n
按第一行展开,得 [*] 根据假设D
n-1
=na
n-1
,D
n-2
=(n一1)a
n-2
,可得 D
n
=2a.na
n-1
一a
2
(n一1)a
n-2
=(n+1)a
n
.所以结论对任意n成立. (2)当a≠0时,系数行列式D
n
=|A|≠0,方程组有唯一解,由克拉默法则,将D
n
第一列换成常数列b,得 [*] (3)当a=0时,方程组为[*] 由于[*]=R(A)=n一1<n,所以方程组有无穷多解,其通解为(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=________。
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(87年)求矩阵A=的实特征值及对应的特征向量.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
随机试题
简述公民民事行为能力的概念及种类。
甘油具有防腐作用的质量分数是10%。()
A.样本率与总体率比较的目的B.配对计数资料的比较目的C.两个样本率比较的目的D.多个样本率作比较的目的E.将两个或多个样本构成比作比较的目的推断样本率所代表的总体率与总体率是否相等
根据《企业会计准则第21号——租赁》的规定,融资租赁是指出租人实质上转移了与()有关的全部风险和报酬的租赁。
Thefamilymembers______inBritainwerenotavailableSundaynightforthereunion.
2018年10月26日,第十三届全国人大常委会第六次会议表决通过了关于修改刑事诉讼法的决定。关于此次修改的内容,下列说法错误的是()。
公务人员回避,是指为了防止公务人员因个人利益和亲属关系等因素对公务活动产生不良影响,对其本人做出一定的限制,使其避开有关亲属关系和公务的制度。根据以上定义,下列哪项不属于公务人员回避?()
美感开始于_______。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存,内容请按照题干所示的全角或半角形式输入。使用“奥斯汀”主题修饰全文,全部幻灯片切换方案为“推进”,效果选项为“自顶部”;放映方式为“观众自行浏览”。
BroughesterUniversityDramaGuildandTheScholarpresentAnita
最新回复
(
0
)