首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
admin
2017-06-14
29
问题
设三元非齐次方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
.求该非齐次方程组的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
1
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qpu4777K
0
考研数学一
相关试题推荐
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
如果0<β<α<π/2,证明
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
随机试题
脂肪乳剂混合液中硒降解的主要影响因素是
使用CPT术语时应注意保证买方及时办理()
A.急性肾盂肾炎B.慢性肾盂肾炎C.无症状性菌尿D.慢性肾小球肾炎E.急性膀胱炎
下列关于带下病之带下过多的治则,说法错误的是
患儿,2岁。发热,体温38℃,鼻塞流涕,咳嗽,皮疹初现,疹色红润,点粒稀疏,躯干为多。多为丘疹,少数疱疹,舌苔薄白,精神尚可。治法是
某浆砌毛石重力式挡土墙,如图所示。墙高6m,墙背垂直光滑;墙后填土的表面水平并与墙齐高;挡土墙基础埋深1m。
安全生产控制考核指标体系中的()是指事故总死亡人数。
蓄电池按蓄电池的电解液可分为()。
某办公楼外装饰幕墙工程,地上20层,正立面为单元式玻璃幕墙5600m2,其他部位为石材12000m2和金属幕墙4700m2、明框玻璃幕墙6000m2,采用钢化中空玻璃,幕墙的开启扇采用隐框玻璃上悬窗。施工过程中,发生了如下事件:事件一:
Itishardlynecessaryformetocitealltheevidenceofthedepressingstateofliteracy.ThesefiguresfromtheDepartmentof
最新回复
(
0
)