首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ
admin
2019-01-23
24
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时(Ⅰ)与(Ⅱ)等价,当a为何值时(Ⅰ)与(Ⅱ)不等价。
选项
答案
令x
j1
α
1
+x
j2
α
2
+x
j3
α
3
=β
j
(j=1,2,3), (1) 对(α
1
,α
2
,α
3
┆β
1
,α
2
,β
3
)作初等行变换,即 [*] 可见,当a+1≠0,即a≠-1时,(1)中的三个非齐次线性方程组都有解且为唯一解,此时β
1
,β
2
,β
3
都可由α
1
,α
2
,α
3
线性表示,即向量组(Ⅱ)可由(Ⅰ)线性表示。 当a+1=0,即a=-1时,由于R(α
1
,α
2
,α
3
)≠R(α
1
,α
2
,α
3
,β
1
),R(α
1
,α
2
,α
3
)≠R(α
1
,α
2
,α
3
,β
3
),故此时β
1
,β
3
不能由α
1
,α
2
,α
3
线性表示,即向量组(Ⅱ)不能由(Ⅰ)线性表示。 类似地,令x
i1
β
1
+x
i2
β
2
+x
i3
β
3
=α
i
(i=1,2,3)。 (2) 对(β
1
,β
2
,β
3
┆α
1
,α
2
,α
3
)作初等行变换,即 [*] 可见,无论a取何值,总有 R(β
1
,β
2
,β
3
)=R(β
1
,β
2
,β
3
,α
1
,α
2
,α
3
), 即α
1
,α
2
,α
3
都可由β
1
,β
2
,β
3
线性表示,亦即向量组(Ⅰ)可由(Ⅱ)线性表示。 综上可知,当a≠-1时,向量组(Ⅰ)与(Ⅱ)等价;当a=-1时,向量组(Ⅰ)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://kaotiyun.com/show/r0M4777K
0
考研数学一
相关试题推荐
设y=sin4x,求y(n).
设f’(x)=arcsin(x一1)2及f(0)=0,求∫01f(x)dx.
设A=(ai≠0,i=1,2,…,n),求A—1.
设随机变量X~E(λ),令Y=,求P(X+Y=0)及FY(y).
用列举法表示下列集合:方程x2-7x+12=0的根的集合.
设A=已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:(1)第三次取得次品;(2)第三次才取得次品;(3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
设A=(α1,α2,α3)为三阶矩阵,且|A|=1。已知B=(α2,α1,2α3),求B*A。
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:fU(μ);
随机试题
A)SocialSecurityprovidesafoundationfortheretirementplansofmillionsofAmericans.Unfortunately,manyofthoseAmeric
消化性溃疡好发部位是
生物和社会因素对健康的共同作用可举例为
5个月大的婴儿正常体重约为(出生体重为3.0kg)()
同一构件中相邻纵向受力钢筋的绑扎搭接接头宜相互错开。绑扎搭接接头中钢筋的横向净距不应小于钢筋直径,且不应小于( )mm。
企业在对利润进行分配时,可根据实际发展对其利润进行分配,以满足企业长期、健康、稳定发展。()
()对于风险相当于精兵简政对于()
下列器物及其属性分类对应错误的是()。
俄国1861年改革中,颁布的废除农奴制的法令是()。
教育是一种社会现象。
最新回复
(
0
)