首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
已知齐次线性方程组 其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
admin
2018-08-02
62
问题
已知齐次线性方程组
其中
a
i
≠0,试讨论a
1
,a
2
,…,a
n
和b满足何种关系时,
(1)方程组仅有零解;
(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
选项
答案
方程组的系数行列式|A|=b
n-1
(b+[*]a
i
),故当|A|≠0,即b≠0且b+[*]a
i
≠0时,方程组只有零解.当b=0或b+[*]a
i
=0时,方程组有非零解.当b=0时,设a
1
≠0,由系统矩阵A的初等行变换: [*] 得方程组的基础解系可取为: [*] 当b+[*]a
i
=0时,有b=[*]a
i
≠0,由系数矩阵的初等行变换: [*] 由此得方程组的用自由未知量表示的通解为:x
2
=x
1
,x
3
=x
1
,…,x
n
=x
1
(x
1
任意),令自由未知量x
1
=1,则方程组的基础解系可取为ξ=(1,1,…,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/r2j4777K
0
考研数学二
相关试题推荐
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
求微分方程y"-y’+2y=0的通解.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设A=有三个线性无关的特征向量,则a=_______.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
求方程组的通解.
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
随机试题
先行组织者教学技术常用于()。
弧焊变压器的特点是:可直接将交流电转变为直流电。
A.头孢他啶B.头孢拉定C.头孢孟多D.氯霉素E.红霉素抗绿脓杆菌作用最强的抗生素是
经从药用植物或动物中提取分离制备的药物内一般含有特殊杂质的主要类型为
A.青色B.赤色C.黄色D.白色E.黑色寒证、痛证、瘀血证、惊风证可见上述何种面色()。
检验批的质量验收记录中的验收结论应由( )填写。
下列关于我国制度管理创新的说法,错误的是()。
在教育领域内,有两类特殊的法律救济制度,分别是教师申诉制度和学生申诉制度。()
()创立的“四艺”。
appear,competitive,corporate,corrupt,differ,ethics,interest,nation,present,sponsor,volunteer,co-workerAsurp
最新回复
(
0
)