首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2019-04-22
53
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,因f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以存在ξ
1
∈(0,a), ξ
0
∈(b,a+b),ξ
1
<ξ
2
,使得 |f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将f(a+b)一f(b)一f(a)中的b改写为x,构造辅助函数 F(x)=f(a+x)一f(x)一f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调递减,所以 F’(x)=f’(a+x)一f’(x)≤0, 于是有F(b)≤F(0)=0,即f(a+b)一f(b)一f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/rRV4777K
0
考研数学二
相关试题推荐
设f(x)在(x0-δ,x0+δ)有n阶连续导数,且f(k)(x0)=0,k=2,3,…,n-1;f(n)(x0)≠0.当0<|h|<δ时,f(x0+h)-f(x0)=hf’(x0+θh),(0<θ<1).求证:.
已知某产品产量的变化率是时间t的函数f(t)=at+b(a,b是常数),设此产品t时的产量函数为P(t),已知P(0)=0,求P(t).
曲线y=ln(e一)的全部渐近线为______.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为_______.
函数y=x2x在区间(0,1]上的最小值为_________。
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=____________.
连续函数f(x)满足f(x)=f(x-t)dt+2,则f(x)=______
设则二次型的对应矩阵是__________。
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
随机试题
行政处理决定的特征之一是()。
出票人划去汇票上的付款地并在旁边签章的行为属于()
Ifyouareoverinthedistrict,______onus.
出现戴阳证的临床意义是
甘草皂苷
依据法官职业道德规范,关于法官行为,下列哪些评论是正确的?(2008年试卷一第89题)
风险管理委员会通常需要的风险监测报告类型是()。
价格是市场机制的核心,是最灵敏的调节手段。()
若有以下程序main(){inta=-2,b=0;do{++b;)while(a++);printf("%d,%d\n",a,b);}则程序的输出结果是
A、 B、 C、 D、 E、 B
最新回复
(
0
)