首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2019-04-22
77
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,因f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以存在ξ
1
∈(0,a), ξ
0
∈(b,a+b),ξ
1
<ξ
2
,使得 |f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将f(a+b)一f(b)一f(a)中的b改写为x,构造辅助函数 F(x)=f(a+x)一f(x)一f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调递减,所以 F’(x)=f’(a+x)一f’(x)≤0, 于是有F(b)≤F(0)=0,即f(a+b)一f(b)一f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/rRV4777K
0
考研数学二
相关试题推荐
已知齐次线性方程组其中≠0,试讨论a1,a2,…,an和b满足何种关系时.(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n),证明:其中E是r阶单位阵.
设f(x)在[0,]上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈(0,),使得f’(ξ)=ηsin2ξf"(ω).
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设A是三阶矩阵,已知|A+E|=0,|A+2E=0,|A+3E|=0,则|A+4E|=____________.
设f(x)有一个原函数
函数y=x2x在区间(0,1]上的最小值为_________。
设则二次型的对应矩阵是__________。
已知α1,α2是非齐次线性方程组Ax=b的两个不同的解,那么中,仍是线性方程组Ax=b特解的共有()
曲线y=ex与该曲线经过原点的切线及y轴所围成的平面图形的面积为()
随机试题
Thewatercompanyisobligedtomaintainasupplyofwholesomewater.
黄精枸杞子
按操作系统的分类,UNIX操作系统是()。
某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元。一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差()。
胰岛素可使骨骼肌细胞和脂肪细胞膜上葡萄糖转运载体的数量增加,已知这些细胞膜上的载体转运葡萄糖的过程不消耗ATP。回答下列问题:健康人进餐后,血糖浓度有小幅度增加。然后恢复到餐前水平。在此过程中,血液中胰岛素浓度的相应变化是_______。
象形字和指事字都属于独体字。(厦门大学2016)
针对以下C语言程序,请按要求回答问题。已知link.c源程序如下:/*link.c程序对单向链表进行操作,首先建立一个单向链表,然后根据用户的选择可以对其进行插入结点、删除结点和链表反转操作*/#include<stdio.h
A、 B、 C、 D、 D
打开工作簿文件EXC.XLSX,对工作表“产品销售情况表”内数据清单的内容按主要关键字“分公司”的降序次序和次要关键字“产品名称”的降序次序进行排序,完成对各分公司销售额总和的分类汇总,汇总结果显示在数据下方,工作表名不变,保存EXC.XLSX工作簿。
A、Itisnecessaryforgettingahighsalary.B、Itisstronglyrecommendedifyouhavethechance.C、Itisnottheonlywayleadi
最新回复
(
0
)