首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b,证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b,证明:A可对角化.
admin
2022-11-08
58
问题
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b,证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|·|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n.同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n.若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE.若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.因为n-r(aE-A)+n-r(bE-A)-n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/rXgD777K
0
考研数学三
相关试题推荐
以词义类型看,“汤山温泉”中的“汤”是词的_____,“煲汤”中的“汤”是词义的_____。
填写下列表达分别属于哪种教学方法选择题例:以母语进行教学,翻译是主要的教学手段,练习手段和评估手段。(语法翻译)学生通过动作反应来提高理解力。
下列各组词中,两词所含语素个数相同的一组是()。
一般来说,一个汉字表示一个音节,所以“小猫儿”是三个音节。()
2013年5月10日,某家具行与某贸易公司达成买卖10套仿古红木家具的协议,约定双方在合同书上盖章后合同成立,但未约定家具的质量标准。家具行盖章后,将合同书寄给贸易公司盖章。贸易公司未盖章,即将10套仿古红木家具发运给家具行。家具行收到家具的当天,将家具卖
甲、乙签订一份设备买卖合同。甲的下列行为中,属于履行附随义务的是
有人认为:“物权的标的物不论辗转流入何人之手,物权人都有权追及物之所在而支配该物。”请运用相关民法理论和规定加以辨析。
已知x为正整数,且6x2-19x-7的值为质数,则这个质数为().
已知点A(-2,2)及点B(-3,-1),P是直线L:2x-y-1=0上的一点,则PA2+PB2取得最小值时点P的坐标为()。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
随机试题
A.过量使用麻醉药、镇静药B.胸腔积液C.气胸D.阻塞性肺病E.肺部炎症性呼吸衰竭最常见的原因是
露剂属于
(2009年)若在迈克尔干涉仪的可动反射镜M移动0.620mm过程中,观察到干涉条纹移动了2300条,则所用光的波长为()nm。
水闸工程下游连接段海漫的构造要求包括()。
工程施工实施阶段监理进行进度控制的基本内容有()。
维修资金的归属权属于()。
调查报告的正文部分包括整个市场调查的详细内容,以下不属于调查报告正文部分内容的是________。
2013年11月,某县团委就在全县范围内开展青少年读书活动的情况,写了《关于在全县开展青少年读书活动的报告》,报告回顾了读书活动的情况,举出典型案例和数据说明了读书活动的效果,报告最后还写到:“开展青少年读书活动的一个重要方面,是推荐合适的书目,为此,我们
Access数据库中查询有很多种,根据每种方式在执行上的不同可以分为选择查询、交叉表查询、【】、【】和SQL查询。
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
最新回复
(
0
)