首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。 求矩阵A的特征值和特征向量。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。 求矩阵A的特征值和特征向量。
admin
2019-05-11
136
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0。记n阶矩阵A=αβ
T
。
求矩阵A的特征值和特征向量。
选项
答案
设λ为A的特征值,则λ
2
为A
2
的特征值。因A
2
=O,所以A
2
的特征值全为零,故λ=0,即A的特征值全为零,于是方程组Ax=0的非零解就是A的特征向量。不妨设a
1
≠0,b
1
≠0,对A作初等行变换得 [*] 则Ax=0的基础解系为(一b
2
,b
1
,0,…,0)
T
,(一b
3
,0,b
1
,…,0)
T
,…,(一b
m
,0,0,…,b
1
)
T
,故矩阵A的特征向量为k
1
(一b
2
,b
1
,0,…,0)
T
+k
2
(一b
3
,0,b
1
,…,0)
T
+…+k
n-1
(一b
n
,0,0,…,b
1
)
T
其中k
1
,k
2
,…,k
n-1
不全为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/rfV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶连续可导,且f(0)=1,f(2)=3,f′(2)=5,则∫01χf〞(2χ)dχ=_______.
设函数y=f(χ)二阶可导,f′(χ)≠0,且与χ=φ(y)互为反函数,求φ〞(y).
曲线y=的渐近线的条数为().
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
函数y=χ+2cosχ在[0,]上的最大值为_______.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A3+3E|.
已知矩阵A=有两个线性无关的特征向量,则a=________.
设f(x),g(x)在区间[一a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,要做多少功?(假设在球从水中取出的过程中水面的高度不变.)
随机试题
患者因干咳3个月就诊,查体:呼吸32/min,脉搏100/min,口唇轻度发绀,听诊双肺下可闻及Velcro啰音,肺HRCT表现为双侧胸膜下分布为主的网状改变,局部有蜂窝形成,结合下列哪一项可以诊断IPF
哺乳期妇女急性乳腺炎的常见病因是
新兴的互联网金融渠道代销的特点不包括()。
在物业承接查验中建设单位应当依据()的规定向物业管理企业移交物业管理用房。
WhatdoyouknowabouttheGloriousRevolutionof1688?
下列哪个选项能使立体拼图完整:
柯立芝繁荣
初级视觉区、初级听觉区、躯体感觉区、言语运动区在大脑皮层的部位依次是
将数据库设计分为6个阶段,其中前4个阶段是
【B1】【B6】
最新回复
(
0
)