首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2018-12-19
76
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
1
。
B、kα
1
。
C、k(α
1
+α
1
)。
D、k(α
1
—α
1
)。
答案
D
解析
因为A是秩为n一1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
)。
此题中A、B、C选项不一定正确。因为通解中必有任意常数,所以选项A不正确;若α
1
=0,则选项B不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时选项C不正确。故选D。
转载请注明原文地址:https://kaotiyun.com/show/rkj4777K
0
考研数学二
相关试题推荐
设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
设矩阵等价,则a=________.
设,问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_________.
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
随机试题
测量误差就其性质而言,可分为()。
掺入适量的缓凝剂能使混凝土()。
防火阀是在一定时间内能满足耐火稳定性和耐火完整性要求,用于管道内阻火的活动式封闭装置,下列应设置防火阀的部位有()。
某企业出售闲置的设备,账面原价21000元,已经使用两年,已经提折旧2100元,出售的时候发生清理费用400元,出售价格18000元,该企业出售此设备发生的净损益为()
2005年9月21日起,我国对活期存款实行按季度结息,每季度末月的()为结息日。
引起潮起潮落的主要因素是海风。()
战争文化研究运用了多种学科、多种理论和多种研究方法来解释战争与社会文化之问的互动关系,远比运用单一学科解释要______得多,可以修正过去一些错误或存在______的观点,也可以对历史进行另外一种角度的解释或观察。
YouwillhearoneoftheongoingseriesofinterviewswithaninfluentialexecutiveintheembeddedLinuxindustry—JimReady.
Aestheticsisthatregioninthelandofsciencewhosebordersofinvestigationareknownasexperiencesofbeauty,andwhoses
Whatyouhavesaidcannotbe______tomysmallfirm.
最新回复
(
0
)