首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-05-09
76
问题
设A=
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中任意向量ξ
2
和ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(1)对增广矩阵(A[*]ξ
1
)作初等行变换,则 [*] 得Aχ=0的基础解系(1,-1,2)
T
或者Aχ=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,-k,2k+1)
T
,其中k为任意常数. 由于A
2
=[*],对增广矩阵(A
2
[*]ξ
1
)作初等行变换,有 [*] 得A
2
χ=0的基础解系(-1,1,0)
T
,(0,0,1)
T
. 又A
2
χ=ξ
1
有特解([*],0,0)
T
.故 ξ
3
=([*],0,0)
T
+t
1
(-1,1,0)
T
+t
2
(0,0,1)
T
或ξ
3
=([*]-t,t,t)
T
,其中t
1
,t
2
为任意常数. (2)因为 [*] 所以,ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/rrw4777K
0
考研数学一
相关试题推荐
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线删与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x),直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的长度
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
已知3阶实对称矩阵A与B=合同,则二次型xTAx的规范形为()
设A,B均为n阶实对称矩阵,若A与B合同,则().
设函数f(x)可导,且f’(x)>0,曲线y=f(x)(x≥0)经过坐标原点O,其上任意一点M的切线与x轴交于T,又MP垂直x轴于点P.已知由曲线y=f(x),直线MP及x轴所围成的面积与△MTP的面积之比为3:2,求满足上述条件的曲线的方程.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
对右半空间x>0内的任意光滑有侧封闭曲面∑,有其中f(x)在(0,+∞)内具有一阶连续的偏导数,且f(0+0)=1,求f(x).
随机试题
下列感染病变中,可经接触传染的是()。
患者女,55岁。近一周出现外阴瘙痒,经检查阴道黏膜覆有白色膜状物,擦除后露出红肿黏膜面,该患者可能患有
局部组织器官发生充血,其体积常
救治乙醇中毒的措施,正确的有()。
(2009年)温度为50℃、直径为0.2m的水平圆柱与20℃的空气之间进行自然对流传热,若空气的运动黏度取16.96×10-6m2/s,则格拉晓夫数为()。
个人兼职取得的收入和退休人员再任职取得的收入,均应按照“劳务报酬所得,应税项目缴纳个人所得税。()
社会历史观的基本问题是()关系问题。
学生选修课程的关系模式为SC(S#,Sn,Sd,Sa,C#,G)(其属性分别为学号、姓名、所在系、年龄、课程号和成绩);C(C#,Cn,P#)(其属性分别为课程号、课程名、先选课)。关系模式中包含对主属性部分依赖的是
•Readtheintroductionbelowaboutaconference.•ChoosethebestwordtofilleachgapfromA,B,CorDontheoppositepage.
DevelopHealthyEatingHabitsinYourChildrenA)Whatdoyouthinkyourchildrenareservedatschool?Thechildrenwereser
最新回复
(
0
)