首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点. (Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
admin
2019-01-29
69
问题
(Ⅰ)设f(x),g(x)在点x=x
0
处可导且f(x
0
)=g(x
0
)=0,f′(x
0
)g′(x
0
)<0,求证:x=x
0
是f(x)g(x)的极大值点.
(Ⅱ)求函数F(x)=
(x∈(—∞,+∞))的值域区间
选项
答案
(Ⅰ)由于[*]=f′(x
0
)g(x
0
)+f(x
0
)g′(x
0
)=0,因此x=x
0
是f(x)g(x)的驻点,进一步证明是它的极大值点. 由条件f′(x
0
)g′(x
0
)<0 [*]f′(x
0
)<0,g′(x
0
)>0(或f′(x
0
)>0,g′(x
0
)<0),由 [*] g′(x
0
)=[*] 及极限的保号性质[*]δ>0,当x∈(x
0
—δ,x
0
+δ,x≠x
0
时 [*] [*]x∈(x
0
,x
0
+δ)时 f(x)<0(>0), g(x)>0(<0); x∈(x
0
—δ,x
0
)时 f(x)>0(<0), g(x)<0(>0) x∈(x
0
—δ,x
0
+δ),x≠x
0
时 f(x)g(x)<0=f(x
0
)g(x
0
) x=x
0
是f(x)g(x)的极大值点. (Ⅱ)由题设知F(x)是(—∞,+∞)上连续的偶函数,且由 [*] F(x)在(—∞,0]上[*],在[0,+∞)上[*]. 由于F(0)=0.又 [*] 因此,函数F(x)的值域区间是[0,[*]arctant2).
解析
转载请注明原文地址:https://kaotiyun.com/show/rwj4777K
0
考研数学二
相关试题推荐
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=____________.
计算积分:已知f(x)=求∫2n2n+2(x一2n)e一xdx,n=2,3,….
求微分方程=x的通解.
已知(aχy3-y2cosχ)dχ+(1+bysinχ+3χ2y2)dy为某一函数的全微分,则a,b取值分别为【】
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
设两曲线y=f(x)与y=∫0arctanx在点(0,0)处有相同的切线,则=________
随机试题
支气管哮喘诊断的最主要依据是
建筑专业施工图设计依据不包括()。
按重量买卖的商品,若合同中未规定计算重量的方法时,习惯上按()计量。
关于定价增发操作流程,假设T日为网上网下申购日,下列说法正确的是()
增值税一般纳税人登记办法规定,纳税人的年应税销售额超过标准时,应登记为一般纳税人,纳税人下列业务的销售额,应包含在年应税销售额范围的有()。
简述学前社会教育的意义。
根据下列资料,回答问题。2013年,Q区全年社会消费品零售总额416.1亿元,比上年增加58.3亿元,增长16.3%,完成零售总额超过全年目标0.3个百分点。全区社会消费品零售总额中,限额以上企业共完成148.1亿元,占35.6%。其中,国家标准
下图所示的是两条长度相同的线段,但b线段显得比a线段长,这种现象是()
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是()
下列关于CiscoAironetll00进入快速配置步骤的描述中,错误的是()。
最新回复
(
0
)