首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S. (1)问P和q为何值时,S达到最大值? (2)求出此最大值.
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S. (1)问P和q为何值时,S达到最大值? (2)求出此最大值.
admin
2021-01-25
65
问题
(01年)已知抛物线y=pχ
2
+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.
(1)问P和q为何值时,S达到最大值?
(2)求出此最大值.
选项
答案
依题意,抛物线如图2.7所示. [*] 求得它与χ轴交点的横坐标为: χ
1
=0,χ
2
=-[*] 面积S=[*] 因直线χ+y=5与抛物线y=pχ+qχ相切,故它们有唯一公共点.由方程组 [*] 得pχ+(q+1)χ-5=0,其判别式必等于零.即 △=(q+1)
2
+20p=0 p=-[*](1+q)
2
将P代入(*)式得 [*] 得驻点q=3.当0<q<3时,S′(q)>0;当q>3时,S′(q)<0.于是当q=3时,S(q)取极大值,即最大值. 此时p=-[*],从而最大S=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/s5x4777K
0
考研数学三
相关试题推荐
设A=(aij)n×m是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设函数f(x)在[a,b]上有三阶连续导数。(Ⅰ)写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式;(Ⅱ)证明存在一点η∈(a,b),使得
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分、96分以上的占考生总数的2.3%,求考生的外语成绩在60分至84分之间的概率.表中,Φ(x)是标准正态分布函数.
设在一次试验中事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________,而事件A至多发生一次的概率为___________.
设f(x)=求常数a与b的值,使f(x)在(一∞,+∞)上处处连续.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5-α4的秩为4.
利用变换y=f(ex)求微分方程y"-(2ex+1)y’+e2xy=e3x的通解.
(99年)设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—一一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元.(Ⅰ)如不限制排污
随机试题
有代谢的时问性差异的药物是
踝关节的摄影中,描述错误的是
自然观察法的缺点包括()。
政治与教育内容的关系是()
面试你的考官中有一个是你的邻居,平时对你很反感。问你怎么办?
(2013国家33)尽管诗歌绝无翻译的可能,却大有翻译介绍的必要。有多位前辈时贤对诗歌翻译理论不乏鞭辟入里的_______。然而,何谓诗歌翻译的理想形式却_______。依次填入画横线部分最恰当的一项是:
影响大小知觉的因素包括
“递延所得税资产”科目的期末余额,可作为()项目填列在资产负债表中。
EveryFirstLadymakesanimpression,whethershemeanstoornot.SomearriveattheWhiteHousealreadywellversedintheout
在数据库表中,要求指定字段或表达式不出现重复值,应该建立的索引是()。
最新回复
(
0
)