首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2019-07-19
46
问题
设f(x)=x
T
Ax为-n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=-tx
1
+x
2
,其中t为待定实数,选择t,使f(x
1
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(t
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
2Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
-4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+ x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=-t
0
x
1
,于是f(x
2
)=x
2
1
Ax
2
= (-t
0
x
1
)
T
A(-t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/sAc4777K
0
考研数学一
相关试题推荐
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
已知方程组,及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T求方程组(I),(Ⅱ)的公共解.
求微分方程y’cosy=(1+cosxsiny)siny的通解.
证明:<ln(1+x)<(x>0).
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:使用的最初150小时内,至少有两个电子管被烧坏的概率;
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设f(x,y)是定义在区域0≤x≤1,x≤y≤1上的二元连续函数,f(0,0)=一1,求极限。
设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明:(Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(Ⅱ)
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<P<1),已知二阶行列式的值大于零的概率等于,则P=_________。
xarcsinxdx=____________.
随机试题
血栓、栓塞并发症最常见的疾病是
颜面部疔疮容易走黄的原因是
鹅口疮心脾积热证的治则是鹅口疮虚火上浮证的治则是
二级账户是介于总分类账户和明细分类账户之间的,其计量单位是( )。
个体工商户和个人不能通过托收承付结算方式进行结算。()
某游泳池有A、B、C三个进水管,先开A、B两管,3小时后,关闭A管打开C管,又过了3小时,关闭B、C两管,经测算,还需开A管注水半小时或者开B管注水45分钟才可将游泳池注满。已知A、B两管注水1小时相当于C管注水2小时,问三管齐开,多长时间可以将游泳池注满
Theprocessbymeansofwhichhumanbeingsarbitrarilymakecertainthingsstandforotherthingsmanybecalledthesymbolicpr
微分方程tanydx-(1+ex)sec2ydy=0满足条件y(0)=的特解为_______.
Parenthoodisn’tacareer-killer.Infact,economistswithtwoormorekidstendtoproducemoreresearch,notless,thantheir
Theworldisundergoingtremendouschanges.Theriseofglobalization,bothaneconomicandculturaltrendthathassweptthroug
最新回复
(
0
)