首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设f(x)=xTAx为-n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
admin
2019-07-19
41
问题
设f(x)=x
T
Ax为-n元二次型,且有R
n
中的向量x
1
和x
2
,使得f(x
1
)>0,f(x
2
)<0.证明:存在R
n
中的向量x
0
≠0,使f(x
0
)=0.
选项
答案
令向量x
0
=-tx
1
+x
2
,其中t为待定实数,选择t,使f(x
1
)=0,即 x
0
T
Ax
0
=(tx
1
+x
2
)
T
A(tx
1
+x
2
) =(t
1
T
+x
2
T
)A(tx
1
+x
2
) =t
2
x
1
T
Ax
1
+2tx
1
T
Ax
2
+x
2
T
2Ax
2
=0, 记实数a=x
1
T
Ax
1
,b=x
1
T
Ax
2
,c=x
2
T
Ax
2
,则由题设条件知a>0,c<0.于是上式可写为at
2
+2bt+c=0. 由于关于t的这个二次方程有a>0,判别式△=4b
2
-4ac>0,故该方程必有实根t
0
≠0,于是有向量x
0
=tx
1
+ x
2
≠0(否则t
0
x
1
+x
2
=0,则x
2
=-t
0
x
1
,于是f(x
2
)=x
2
1
Ax
2
= (-t
0
x
1
)
T
A(-t
0
x
1
)=t
0
2
x
1
T
Ax
1
>0,它与已知的f(x
2
)<0相矛盾),使得 f(x
0
)=x
0
T
Ax
0
=at
0
2
+abt
0
+c=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/sAc4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
求下列方程的通解或满足给定初始条件的特解:(y+2xy2)dx+(x一2x2y)dy=0
设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则统计量服从()
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设区域其中常数a>b>0.D1是D在第一象限部分,f(x,y)在D上连续,等式成立的一个充分条件是()
已知随机变量X1与X2的概率分布,而且P{X1X2=0}-1.求X1与X2的联合分布;
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
设单位质点在水平面内做直线运动,初速度v|t=0=v0。已知阻力与速度成正比(比例常数为1),问t为多少时,此质点的速度为[*],并求到此时刻该质点所经过的路程。
设f(π)=2,[f(x)+f’’(x)]sinxdx=5,则f(0)=______.
随机试题
追惟一二,仿佛如昨
某男,5岁。突发高热、呕吐、惊厥,数小时后出现面色苍白、四肢厥冷、脉搏细数、血压下降至休克水平。经实验室检查诊断为暴发型流脑所致感染中毒性休克,应采取的抗休克药物为
下列关于劳动争议处理的说法,错误的是( )。
某企业当年有生产职工为200人,当地政府确定人均月计税工作标准是800元,该企业当年发放的工资总额是210万元,该企业在计算应纳税所得额时,准予扣除的职工工会经费、职工福利费、职工教育费共()。
甲、乙、丙三方合作研发一项新技术,合作开发合同中未约定该技术成果的权利归属。新技术研发成功后,乙、丙提出申请专利,甲不同意。根据《合同法》的规定,下列关于专利申请的表述中,正确的是()。
下列关于契税的陈述,正确的有()。
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。求证:AB⊥DE;
资本主义土地私有制的特点不包括()。
在完全竞争的条件下,市场均衡意味着资源的最佳配置,而打破市场均衡的可能原因有()。
A、Returnthebikesbacktothesamepick-uppoint.B、Usethebikeforashortorlongtrip.C、Swipetheirordinarytravelcards
最新回复
(
0
)