首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=Ф(x)=∫ab|x一t|φ(t)dt ( )
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=Ф(x)=∫ab|x一t|φ(t)dt ( )
admin
2016-06-25
24
问题
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=Ф(x)=∫
a
b
|x一t|φ(t)dt ( )
选项
A、在(a,b)内的图形为凸
B、在(a,b)内的图形为凹
C、在(b,b)内有拐点
D、在(a,b)内有间断点
答案
B
解析
先将Ф(x)利用|x—t|的分段性分解变形,有
Ф(x)=∫
a
x
(x一t)φ(t)dt+∫
x
b
(t一x)φ(t)dt=x∫
a
x
φ(t)dt—∫
a
x
tφ(t)dt+∫
x
b
tφ(t)dt—x∫
x
b
φ(t)dt.
因为φ(t)在[a,b]上连续,所以Ф(x)可导,因而答案不可能是(D).其余三个选项,只需求出Ф"(x),讨论Ф"(x)在(a,b)内的符号即可.因
Ф(x)=∫
a
x
φ(t)dt一∫
x
b
φ(t)dt,
Ф(x)=2φ(x)>0,x∈[a,b],
故y=Ф(x)在(a,b)内的图形为凹.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/sBt4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f′(x)+f(x)-1/(x+1)∫0xf(t)dt=0.(1)求f′(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设二阶常系数线性微分方程y″+ay′+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设函数f(x)可导且0≤f′(x)≤k/(1+x2)(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设函数f(x)连续,且f′(0)>0,则存在δ>0使得().
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定.其中f,g,h连续可偏导且
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x)=,且a0=1,an+1=an+n(n=0,1,2,…).(1)求f(x)满足的微分方程;(2)求
设f(x)的一个原函数为F(x),且F(x)为方程xy′+y=ex的满足(x)=1的解.(1)求F(x)关于x的幂级数;(2)求的和.
随机试题
应用抗甲状腺药物治疗甲亢,初始治疗多少时间最易发生粒细胞减少
临床口腔医师在整个三级口腔预防中的主要职责不包括
观察舌苔以辨别病邪浅深的主要依据是
应用贝母瓜萎散的辨证要点是()
江河、湖泊的水位在汛期上涨可能出现险情之前而必须开始准备防汛工作时的水位称为()。
下列各项中,应计人期间费用的有()。
中学生的伦理道德发展的基本特征之一是可以做到言行一致,具有________性。
开展好课外活动有哪些基本要求?
阅读下面材料并回答问题。在经济领域,效率强调提高产出与投入的比率,扩大不同能力主体之间的财富收益差距,而公平则强调收入分配相对平等,社会成员之间的差距不能过大。二者侧重不同,但又具有一致性,都应以调动劳动者的积极性,促进社会稳定发展为目标。
Speakingtwolanguagesratherthanjustonehasobviouspracticalbenefits.Inrecentyears,scientistshavebeguntoshowthat
最新回复
(
0
)